Spaces:
Runtime error
Runtime error
File size: 6,802 Bytes
8c9c9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from scipy.spatial import ConvexHull
import torch
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
use_relative_movement=False, use_relative_jacobian=False):
if adapt_movement_scale:
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
else:
adapt_movement_scale = 1
kp_new = {k: v for k, v in kp_driving.items()}
if use_relative_movement:
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
kp_value_diff *= adapt_movement_scale
kp_new['value'] = kp_value_diff + kp_source['value']
if use_relative_jacobian:
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
return kp_new
def headpose_pred_to_degree(pred):
device = pred.device
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).type_as(pred).to(device)
pred = F.softmax(pred)
degree = torch.sum(pred*idx_tensor, 1) * 3 - 99
return degree
def get_rotation_matrix(yaw, pitch, roll):
yaw = yaw / 180 * 3.14
pitch = pitch / 180 * 3.14
roll = roll / 180 * 3.14
roll = roll.unsqueeze(1)
pitch = pitch.unsqueeze(1)
yaw = yaw.unsqueeze(1)
pitch_mat = torch.cat([torch.ones_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch),
torch.zeros_like(pitch), torch.cos(pitch), -torch.sin(pitch),
torch.zeros_like(pitch), torch.sin(pitch), torch.cos(pitch)], dim=1)
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
yaw_mat = torch.cat([torch.cos(yaw), torch.zeros_like(yaw), torch.sin(yaw),
torch.zeros_like(yaw), torch.ones_like(yaw), torch.zeros_like(yaw),
-torch.sin(yaw), torch.zeros_like(yaw), torch.cos(yaw)], dim=1)
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
roll_mat = torch.cat([torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll),
torch.sin(roll), torch.cos(roll), torch.zeros_like(roll),
torch.zeros_like(roll), torch.zeros_like(roll), torch.ones_like(roll)], dim=1)
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
rot_mat = torch.einsum('bij,bjk,bkm->bim', pitch_mat, yaw_mat, roll_mat)
return rot_mat
def keypoint_transformation(kp_canonical, he, wo_exp=False):
kp = kp_canonical['value'] # (bs, k, 3)
yaw, pitch, roll= he['yaw'], he['pitch'], he['roll']
yaw = headpose_pred_to_degree(yaw)
pitch = headpose_pred_to_degree(pitch)
roll = headpose_pred_to_degree(roll)
if 'yaw_in' in he:
yaw = he['yaw_in']
if 'pitch_in' in he:
pitch = he['pitch_in']
if 'roll_in' in he:
roll = he['roll_in']
rot_mat = get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3)
t, exp = he['t'], he['exp']
if wo_exp:
exp = exp*0
# keypoint rotation
kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp)
# keypoint translation
t[:, 0] = t[:, 0]*0
t[:, 2] = t[:, 2]*0
t = t.unsqueeze(1).repeat(1, kp.shape[1], 1)
kp_t = kp_rotated + t
# add expression deviation
exp = exp.view(exp.shape[0], -1, 3)
kp_transformed = kp_t + exp
return {'value': kp_transformed}
def make_animation(source_image, source_semantics, target_semantics,
generator, kp_detector, he_estimator, mapping,
yaw_c_seq=None, pitch_c_seq=None, roll_c_seq=None,
use_exp=True, use_half=False):
with torch.no_grad():
predictions = []
kp_canonical = kp_detector(source_image)
he_source = mapping(source_semantics)
kp_source = keypoint_transformation(kp_canonical, he_source)
for frame_idx in tqdm(range(target_semantics.shape[1]), 'Face Renderer:'):
# still check the dimension
# print(target_semantics.shape, source_semantics.shape)
target_semantics_frame = target_semantics[:, frame_idx]
he_driving = mapping(target_semantics_frame)
if yaw_c_seq is not None:
he_driving['yaw_in'] = yaw_c_seq[:, frame_idx]
if pitch_c_seq is not None:
he_driving['pitch_in'] = pitch_c_seq[:, frame_idx]
if roll_c_seq is not None:
he_driving['roll_in'] = roll_c_seq[:, frame_idx]
kp_driving = keypoint_transformation(kp_canonical, he_driving)
kp_norm = kp_driving
out = generator(source_image, kp_source=kp_source, kp_driving=kp_norm)
'''
source_image_new = out['prediction'].squeeze(1)
kp_canonical_new = kp_detector(source_image_new)
he_source_new = he_estimator(source_image_new)
kp_source_new = keypoint_transformation(kp_canonical_new, he_source_new, wo_exp=True)
kp_driving_new = keypoint_transformation(kp_canonical_new, he_driving, wo_exp=True)
out = generator(source_image_new, kp_source=kp_source_new, kp_driving=kp_driving_new)
'''
predictions.append(out['prediction'])
predictions_ts = torch.stack(predictions, dim=1)
return predictions_ts
class AnimateModel(torch.nn.Module):
"""
Merge all generator related updates into single model for better multi-gpu usage
"""
def __init__(self, generator, kp_extractor, mapping):
super(AnimateModel, self).__init__()
self.kp_extractor = kp_extractor
self.generator = generator
self.mapping = mapping
self.kp_extractor.eval()
self.generator.eval()
self.mapping.eval()
def forward(self, x):
source_image = x['source_image']
source_semantics = x['source_semantics']
target_semantics = x['target_semantics']
yaw_c_seq = x['yaw_c_seq']
pitch_c_seq = x['pitch_c_seq']
roll_c_seq = x['roll_c_seq']
predictions_video = make_animation(source_image, source_semantics, target_semantics,
self.generator, self.kp_extractor,
self.mapping, use_exp = True,
yaw_c_seq=yaw_c_seq, pitch_c_seq=pitch_c_seq, roll_c_seq=roll_c_seq)
return predictions_video |