File size: 7,933 Bytes
8c9c9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import collections
import functools
import os
import re

import yaml

class AttrDict(dict):
    """Dict as attribute trick."""

    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self
        for key, value in self.__dict__.items():
            if isinstance(value, dict):
                self.__dict__[key] = AttrDict(value)
            elif isinstance(value, (list, tuple)):
                if isinstance(value[0], dict):
                    self.__dict__[key] = [AttrDict(item) for item in value]
                else:
                    self.__dict__[key] = value

    def yaml(self):
        """Convert object to yaml dict and return."""
        yaml_dict = {}
        for key, value in self.__dict__.items():
            if isinstance(value, AttrDict):
                yaml_dict[key] = value.yaml()
            elif isinstance(value, list):
                if isinstance(value[0], AttrDict):
                    new_l = []
                    for item in value:
                        new_l.append(item.yaml())
                    yaml_dict[key] = new_l
                else:
                    yaml_dict[key] = value
            else:
                yaml_dict[key] = value
        return yaml_dict

    def __repr__(self):
        """Print all variables."""
        ret_str = []
        for key, value in self.__dict__.items():
            if isinstance(value, AttrDict):
                ret_str.append('{}:'.format(key))
                child_ret_str = value.__repr__().split('\n')
                for item in child_ret_str:
                    ret_str.append('    ' + item)
            elif isinstance(value, list):
                if isinstance(value[0], AttrDict):
                    ret_str.append('{}:'.format(key))
                    for item in value:
                        # Treat as AttrDict above.
                        child_ret_str = item.__repr__().split('\n')
                        for item in child_ret_str:
                            ret_str.append('    ' + item)
                else:
                    ret_str.append('{}: {}'.format(key, value))
            else:
                ret_str.append('{}: {}'.format(key, value))
        return '\n'.join(ret_str)


class Config(AttrDict):
    r"""Configuration class. This should include every human specifiable
    hyperparameter values for your training."""

    def __init__(self, filename=None, args=None, verbose=False, is_train=True):
        super(Config, self).__init__()
        # Set default parameters.
        # Logging.

        large_number = 1000000000
        self.snapshot_save_iter = large_number
        self.snapshot_save_epoch = large_number
        self.snapshot_save_start_iter = 0
        self.snapshot_save_start_epoch = 0
        self.image_save_iter = large_number
        self.eval_epoch = large_number
        self.start_eval_epoch = large_number
        self.eval_epoch = large_number
        self.max_epoch = large_number
        self.max_iter = large_number
        self.logging_iter = 100
        self.image_to_tensorboard=False
        self.which_iter = 0 # args.which_iter
        self.resume = False

        self.checkpoints_dir = '/Users/shadowcun/Downloads/'
        self.name = 'face'
        self.phase = 'train' if is_train else 'test'

        # Networks.
        self.gen = AttrDict(type='generators.dummy')
        self.dis = AttrDict(type='discriminators.dummy')

        # Optimizers.
        self.gen_optimizer = AttrDict(type='adam',
                                    lr=0.0001,
                                    adam_beta1=0.0,
                                    adam_beta2=0.999,
                                    eps=1e-8,
                                    lr_policy=AttrDict(iteration_mode=False,
                                                    type='step',
                                                    step_size=large_number,
                                                    gamma=1))
        self.dis_optimizer = AttrDict(type='adam',
                                lr=0.0001,
                                adam_beta1=0.0,
                                adam_beta2=0.999,
                                eps=1e-8,
                                lr_policy=AttrDict(iteration_mode=False,
                                                   type='step',
                                                   step_size=large_number,
                                                   gamma=1))
        # Data.
        self.data = AttrDict(name='dummy',
                             type='datasets.images',
                             num_workers=0)
        self.test_data = AttrDict(name='dummy',
                                  type='datasets.images',
                                  num_workers=0,
                                  test=AttrDict(is_lmdb=False,
                                                roots='',
                                                batch_size=1))
        self.trainer = AttrDict(
            model_average=False,
            model_average_beta=0.9999,
            model_average_start_iteration=1000,
            model_average_batch_norm_estimation_iteration=30,
            model_average_remove_sn=True,
            image_to_tensorboard=False,
            hparam_to_tensorboard=False,
            distributed_data_parallel='pytorch',
            delay_allreduce=True,
            gan_relativistic=False,
            gen_step=1,
            dis_step=1)

        # # Cudnn.
        self.cudnn = AttrDict(deterministic=False,
                              benchmark=True)

        # Others.
        self.pretrained_weight = ''
        self.inference_args = AttrDict()


        # Update with given configurations.
        assert os.path.exists(filename), 'File {} not exist.'.format(filename)
        loader = yaml.SafeLoader
        loader.add_implicit_resolver(
            u'tag:yaml.org,2002:float',
            re.compile(u'''^(?:
             [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
            |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
            |\\.[0-9_]+(?:[eE][-+][0-9]+)?
            |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
            |[-+]?\\.(?:inf|Inf|INF)
            |\\.(?:nan|NaN|NAN))$''', re.X),
            list(u'-+0123456789.'))
        try:
            with open(filename, 'r') as f:
                cfg_dict = yaml.load(f, Loader=loader)
        except EnvironmentError:
            print('Please check the file with name of "%s"', filename)
        recursive_update(self, cfg_dict)

        # Put common opts in both gen and dis.
        if 'common' in cfg_dict:
            self.common = AttrDict(**cfg_dict['common'])
            self.gen.common = self.common
            self.dis.common = self.common


        if verbose:
            print(' config '.center(80, '-'))
            print(self.__repr__())
            print(''.center(80, '-'))


def rsetattr(obj, attr, val):
    """Recursively find object and set value"""
    pre, _, post = attr.rpartition('.')
    return setattr(rgetattr(obj, pre) if pre else obj, post, val)


def rgetattr(obj, attr, *args):
    """Recursively find object and return value"""

    def _getattr(obj, attr):
        r"""Get attribute."""
        return getattr(obj, attr, *args)

    return functools.reduce(_getattr, [obj] + attr.split('.'))


def recursive_update(d, u):
    """Recursively update AttrDict d with AttrDict u"""
    for key, value in u.items():
        if isinstance(value, collections.abc.Mapping):
            d.__dict__[key] = recursive_update(d.get(key, AttrDict({})), value)
        elif isinstance(value, (list, tuple)):
            if isinstance(value[0], dict):
                d.__dict__[key] = [AttrDict(item) for item in value]
            else:
                d.__dict__[key] = value
        else:
            d.__dict__[key] = value
    return d