Spaces:
Runtime error
Runtime error
File size: 16,092 Bytes
8c9c9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
"""Helper for evaluation on the Labeled Faces in the Wild dataset
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import datetime
import os
import pickle
import mxnet as mx
import numpy as np
import sklearn
import torch
from mxnet import ndarray as nd
from scipy import interpolate
from sklearn.decomposition import PCA
from sklearn.model_selection import KFold
class LFold:
def __init__(self, n_splits=2, shuffle=False):
self.n_splits = n_splits
if self.n_splits > 1:
self.k_fold = KFold(n_splits=n_splits, shuffle=shuffle)
def split(self, indices):
if self.n_splits > 1:
return self.k_fold.split(indices)
else:
return [(indices, indices)]
def calculate_roc(thresholds,
embeddings1,
embeddings2,
actual_issame,
nrof_folds=10,
pca=0):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
tprs = np.zeros((nrof_folds, nrof_thresholds))
fprs = np.zeros((nrof_folds, nrof_thresholds))
accuracy = np.zeros((nrof_folds))
indices = np.arange(nrof_pairs)
if pca == 0:
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
if pca > 0:
print('doing pca on', fold_idx)
embed1_train = embeddings1[train_set]
embed2_train = embeddings2[train_set]
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
pca_model = PCA(n_components=pca)
pca_model.fit(_embed_train)
embed1 = pca_model.transform(embeddings1)
embed2 = pca_model.transform(embeddings2)
embed1 = sklearn.preprocessing.normalize(embed1)
embed2 = sklearn.preprocessing.normalize(embed2)
diff = np.subtract(embed1, embed2)
dist = np.sum(np.square(diff), 1)
# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
for threshold_idx, threshold in enumerate(thresholds):
_, _, acc_train[threshold_idx] = calculate_accuracy(
threshold, dist[train_set], actual_issame[train_set])
best_threshold_index = np.argmax(acc_train)
for threshold_idx, threshold in enumerate(thresholds):
tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy(
threshold, dist[test_set],
actual_issame[test_set])
_, _, accuracy[fold_idx] = calculate_accuracy(
thresholds[best_threshold_index], dist[test_set],
actual_issame[test_set])
tpr = np.mean(tprs, 0)
fpr = np.mean(fprs, 0)
return tpr, fpr, accuracy
def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(
np.logical_and(np.logical_not(predict_issame),
np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
acc = float(tp + tn) / dist.size
return tpr, fpr, acc
def calculate_val(thresholds,
embeddings1,
embeddings2,
actual_issame,
far_target,
nrof_folds=10):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
val = np.zeros(nrof_folds)
far = np.zeros(nrof_folds)
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
indices = np.arange(nrof_pairs)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the threshold that gives FAR = far_target
far_train = np.zeros(nrof_thresholds)
for threshold_idx, threshold in enumerate(thresholds):
_, far_train[threshold_idx] = calculate_val_far(
threshold, dist[train_set], actual_issame[train_set])
if np.max(far_train) >= far_target:
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
threshold = f(far_target)
else:
threshold = 0.0
val[fold_idx], far[fold_idx] = calculate_val_far(
threshold, dist[test_set], actual_issame[test_set])
val_mean = np.mean(val)
far_mean = np.mean(far)
val_std = np.std(val)
return val_mean, val_std, far_mean
def calculate_val_far(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
false_accept = np.sum(
np.logical_and(predict_issame, np.logical_not(actual_issame)))
n_same = np.sum(actual_issame)
n_diff = np.sum(np.logical_not(actual_issame))
# print(true_accept, false_accept)
# print(n_same, n_diff)
val = float(true_accept) / float(n_same)
far = float(false_accept) / float(n_diff)
return val, far
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
# Calculate evaluation metrics
thresholds = np.arange(0, 4, 0.01)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = calculate_roc(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
nrof_folds=nrof_folds,
pca=pca)
thresholds = np.arange(0, 4, 0.001)
val, val_std, far = calculate_val(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
1e-3,
nrof_folds=nrof_folds)
return tpr, fpr, accuracy, val, val_std, far
@torch.no_grad()
def load_bin(path, image_size):
try:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f) # py2
except UnicodeDecodeError as e:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f, encoding='bytes') # py3
data_list = []
for flip in [0, 1]:
data = torch.empty((len(issame_list) * 2, 3, image_size[0], image_size[1]))
data_list.append(data)
for idx in range(len(issame_list) * 2):
_bin = bins[idx]
img = mx.image.imdecode(_bin)
if img.shape[1] != image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0, 1]:
if flip == 1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][idx][:] = torch.from_numpy(img.asnumpy())
if idx % 1000 == 0:
print('loading bin', idx)
print(data_list[0].shape)
return data_list, issame_list
@torch.no_grad()
def test(data_set, backbone, batch_size, nfolds=10):
print('testing verification..')
data_list = data_set[0]
issame_list = data_set[1]
embeddings_list = []
time_consumed = 0.0
for i in range(len(data_list)):
data = data_list[i]
embeddings = None
ba = 0
while ba < data.shape[0]:
bb = min(ba + batch_size, data.shape[0])
count = bb - ba
_data = data[bb - batch_size: bb]
time0 = datetime.datetime.now()
img = ((_data / 255) - 0.5) / 0.5
net_out: torch.Tensor = backbone(img)
_embeddings = net_out.detach().cpu().numpy()
time_now = datetime.datetime.now()
diff = time_now - time0
time_consumed += diff.total_seconds()
if embeddings is None:
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
ba = bb
embeddings_list.append(embeddings)
_xnorm = 0.0
_xnorm_cnt = 0
for embed in embeddings_list:
for i in range(embed.shape[0]):
_em = embed[i]
_norm = np.linalg.norm(_em)
_xnorm += _norm
_xnorm_cnt += 1
_xnorm /= _xnorm_cnt
acc1 = 0.0
std1 = 0.0
embeddings = embeddings_list[0] + embeddings_list[1]
embeddings = sklearn.preprocessing.normalize(embeddings)
print(embeddings.shape)
print('infer time', time_consumed)
_, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=nfolds)
acc2, std2 = np.mean(accuracy), np.std(accuracy)
return acc1, std1, acc2, std2, _xnorm, embeddings_list
def dumpR(data_set,
backbone,
batch_size,
name='',
data_extra=None,
label_shape=None):
print('dump verification embedding..')
data_list = data_set[0]
issame_list = data_set[1]
embeddings_list = []
time_consumed = 0.0
for i in range(len(data_list)):
data = data_list[i]
embeddings = None
ba = 0
while ba < data.shape[0]:
bb = min(ba + batch_size, data.shape[0])
count = bb - ba
_data = nd.slice_axis(data, axis=0, begin=bb - batch_size, end=bb)
time0 = datetime.datetime.now()
if data_extra is None:
db = mx.io.DataBatch(data=(_data,), label=(_label,))
else:
db = mx.io.DataBatch(data=(_data, _data_extra),
label=(_label,))
model.forward(db, is_train=False)
net_out = model.get_outputs()
_embeddings = net_out[0].asnumpy()
time_now = datetime.datetime.now()
diff = time_now - time0
time_consumed += diff.total_seconds()
if embeddings is None:
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
ba = bb
embeddings_list.append(embeddings)
embeddings = embeddings_list[0] + embeddings_list[1]
embeddings = sklearn.preprocessing.normalize(embeddings)
actual_issame = np.asarray(issame_list)
outname = os.path.join('temp.bin')
with open(outname, 'wb') as f:
pickle.dump((embeddings, issame_list),
f,
protocol=pickle.HIGHEST_PROTOCOL)
# if __name__ == '__main__':
#
# parser = argparse.ArgumentParser(description='do verification')
# # general
# parser.add_argument('--data-dir', default='', help='')
# parser.add_argument('--model',
# default='../model/softmax,50',
# help='path to load model.')
# parser.add_argument('--target',
# default='lfw,cfp_ff,cfp_fp,agedb_30',
# help='test targets.')
# parser.add_argument('--gpu', default=0, type=int, help='gpu id')
# parser.add_argument('--batch-size', default=32, type=int, help='')
# parser.add_argument('--max', default='', type=str, help='')
# parser.add_argument('--mode', default=0, type=int, help='')
# parser.add_argument('--nfolds', default=10, type=int, help='')
# args = parser.parse_args()
# image_size = [112, 112]
# print('image_size', image_size)
# ctx = mx.gpu(args.gpu)
# nets = []
# vec = args.model.split(',')
# prefix = args.model.split(',')[0]
# epochs = []
# if len(vec) == 1:
# pdir = os.path.dirname(prefix)
# for fname in os.listdir(pdir):
# if not fname.endswith('.params'):
# continue
# _file = os.path.join(pdir, fname)
# if _file.startswith(prefix):
# epoch = int(fname.split('.')[0].split('-')[1])
# epochs.append(epoch)
# epochs = sorted(epochs, reverse=True)
# if len(args.max) > 0:
# _max = [int(x) for x in args.max.split(',')]
# assert len(_max) == 2
# if len(epochs) > _max[1]:
# epochs = epochs[_max[0]:_max[1]]
#
# else:
# epochs = [int(x) for x in vec[1].split('|')]
# print('model number', len(epochs))
# time0 = datetime.datetime.now()
# for epoch in epochs:
# print('loading', prefix, epoch)
# sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
# # arg_params, aux_params = ch_dev(arg_params, aux_params, ctx)
# all_layers = sym.get_internals()
# sym = all_layers['fc1_output']
# model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
# # model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], image_size[1]))], label_shapes=[('softmax_label', (args.batch_size,))])
# model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0],
# image_size[1]))])
# model.set_params(arg_params, aux_params)
# nets.append(model)
# time_now = datetime.datetime.now()
# diff = time_now - time0
# print('model loading time', diff.total_seconds())
#
# ver_list = []
# ver_name_list = []
# for name in args.target.split(','):
# path = os.path.join(args.data_dir, name + ".bin")
# if os.path.exists(path):
# print('loading.. ', name)
# data_set = load_bin(path, image_size)
# ver_list.append(data_set)
# ver_name_list.append(name)
#
# if args.mode == 0:
# for i in range(len(ver_list)):
# results = []
# for model in nets:
# acc1, std1, acc2, std2, xnorm, embeddings_list = test(
# ver_list[i], model, args.batch_size, args.nfolds)
# print('[%s]XNorm: %f' % (ver_name_list[i], xnorm))
# print('[%s]Accuracy: %1.5f+-%1.5f' % (ver_name_list[i], acc1, std1))
# print('[%s]Accuracy-Flip: %1.5f+-%1.5f' % (ver_name_list[i], acc2, std2))
# results.append(acc2)
# print('Max of [%s] is %1.5f' % (ver_name_list[i], np.max(results)))
# elif args.mode == 1:
# raise ValueError
# else:
# model = nets[0]
# dumpR(ver_list[0], model, args.batch_size, args.target)
|