File size: 9,492 Bytes
8c9c9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import logging
import os

import torch
import torch.distributed as dist
from torch.nn import Module
from torch.nn.functional import normalize, linear
from torch.nn.parameter import Parameter


class PartialFC(Module):
    """
    Author: {Xiang An, Yang Xiao, XuHan Zhu} in DeepGlint,
    Partial FC: Training 10 Million Identities on a Single Machine
    See the original paper:
    https://arxiv.org/abs/2010.05222
    """

    @torch.no_grad()
    def __init__(self, rank, local_rank, world_size, batch_size, resume,
                 margin_softmax, num_classes, sample_rate=1.0, embedding_size=512, prefix="./"):
        """
        rank: int
            Unique process(GPU) ID from 0 to world_size - 1.
        local_rank: int
            Unique process(GPU) ID within the server from 0 to 7.
        world_size: int
            Number of GPU.
        batch_size: int
            Batch size on current rank(GPU).
        resume: bool
            Select whether to restore the weight of softmax.
        margin_softmax: callable
            A function of margin softmax, eg: cosface, arcface.
        num_classes: int
            The number of class center storage in current rank(CPU/GPU), usually is total_classes // world_size,
            required.
        sample_rate: float
            The partial fc sampling rate, when the number of classes increases to more than 2 millions, Sampling
            can greatly speed up training, and reduce a lot of GPU memory, default is 1.0.
        embedding_size: int
            The feature dimension, default is 512.
        prefix: str
            Path for save checkpoint, default is './'.
        """
        super(PartialFC, self).__init__()
        #
        self.num_classes: int = num_classes
        self.rank: int = rank
        self.local_rank: int = local_rank
        self.device: torch.device = torch.device("cuda:{}".format(self.local_rank))
        self.world_size: int = world_size
        self.batch_size: int = batch_size
        self.margin_softmax: callable = margin_softmax
        self.sample_rate: float = sample_rate
        self.embedding_size: int = embedding_size
        self.prefix: str = prefix
        self.num_local: int = num_classes // world_size + int(rank < num_classes % world_size)
        self.class_start: int = num_classes // world_size * rank + min(rank, num_classes % world_size)
        self.num_sample: int = int(self.sample_rate * self.num_local)

        self.weight_name = os.path.join(self.prefix, "rank_{}_softmax_weight.pt".format(self.rank))
        self.weight_mom_name = os.path.join(self.prefix, "rank_{}_softmax_weight_mom.pt".format(self.rank))

        if resume:
            try:
                self.weight: torch.Tensor = torch.load(self.weight_name)
                self.weight_mom: torch.Tensor = torch.load(self.weight_mom_name)
                if self.weight.shape[0] != self.num_local or self.weight_mom.shape[0] != self.num_local:
                    raise IndexError
                logging.info("softmax weight resume successfully!")
                logging.info("softmax weight mom resume successfully!")
            except (FileNotFoundError, KeyError, IndexError):
                self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device)
                self.weight_mom: torch.Tensor = torch.zeros_like(self.weight)
                logging.info("softmax weight init!")
                logging.info("softmax weight mom init!")
        else:
            self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device)
            self.weight_mom: torch.Tensor = torch.zeros_like(self.weight)
            logging.info("softmax weight init successfully!")
            logging.info("softmax weight mom init successfully!")
        self.stream: torch.cuda.Stream = torch.cuda.Stream(local_rank)

        self.index = None
        if int(self.sample_rate) == 1:
            self.update = lambda: 0
            self.sub_weight = Parameter(self.weight)
            self.sub_weight_mom = self.weight_mom
        else:
            self.sub_weight = Parameter(torch.empty((0, 0)).cuda(local_rank))

    def save_params(self):
        """ Save softmax weight for each rank on prefix
        """
        torch.save(self.weight.data, self.weight_name)
        torch.save(self.weight_mom, self.weight_mom_name)

    @torch.no_grad()
    def sample(self, total_label):
        """
        Sample all positive class centers in each rank, and random select neg class centers to filling a fixed
        `num_sample`.

        total_label: tensor
            Label after all gather, which cross all GPUs.
        """
        index_positive = (self.class_start <= total_label) & (total_label < self.class_start + self.num_local)
        total_label[~index_positive] = -1
        total_label[index_positive] -= self.class_start
        if int(self.sample_rate) != 1:
            positive = torch.unique(total_label[index_positive], sorted=True)
            if self.num_sample - positive.size(0) >= 0:
                perm = torch.rand(size=[self.num_local], device=self.device)
                perm[positive] = 2.0
                index = torch.topk(perm, k=self.num_sample)[1]
                index = index.sort()[0]
            else:
                index = positive
            self.index = index
            total_label[index_positive] = torch.searchsorted(index, total_label[index_positive])
            self.sub_weight = Parameter(self.weight[index])
            self.sub_weight_mom = self.weight_mom[index]

    def forward(self, total_features, norm_weight):
        """ Partial fc forward, `logits = X * sample(W)`
        """
        torch.cuda.current_stream().wait_stream(self.stream)
        logits = linear(total_features, norm_weight)
        return logits

    @torch.no_grad()
    def update(self):
        """ Set updated weight and weight_mom to memory bank.
        """
        self.weight_mom[self.index] = self.sub_weight_mom
        self.weight[self.index] = self.sub_weight

    def prepare(self, label, optimizer):
        """
        get sampled class centers for cal softmax.

        label: tensor
            Label tensor on each rank.
        optimizer: opt
            Optimizer for partial fc, which need to get weight mom.
        """
        with torch.cuda.stream(self.stream):
            total_label = torch.zeros(
                size=[self.batch_size * self.world_size], device=self.device, dtype=torch.long)
            dist.all_gather(list(total_label.chunk(self.world_size, dim=0)), label)
            self.sample(total_label)
            optimizer.state.pop(optimizer.param_groups[-1]['params'][0], None)
            optimizer.param_groups[-1]['params'][0] = self.sub_weight
            optimizer.state[self.sub_weight]['momentum_buffer'] = self.sub_weight_mom
            norm_weight = normalize(self.sub_weight)
            return total_label, norm_weight

    def forward_backward(self, label, features, optimizer):
        """
        Partial fc forward and backward with model parallel

        label: tensor
            Label tensor on each rank(GPU)
        features: tensor
            Features tensor on each rank(GPU)
        optimizer: optimizer
            Optimizer for partial fc

        Returns:
        --------
        x_grad: tensor
            The gradient of features.
        loss_v: tensor
            Loss value for cross entropy.
        """
        total_label, norm_weight = self.prepare(label, optimizer)
        total_features = torch.zeros(
            size=[self.batch_size * self.world_size, self.embedding_size], device=self.device)
        dist.all_gather(list(total_features.chunk(self.world_size, dim=0)), features.data)
        total_features.requires_grad = True

        logits = self.forward(total_features, norm_weight)
        logits = self.margin_softmax(logits, total_label)

        with torch.no_grad():
            max_fc = torch.max(logits, dim=1, keepdim=True)[0]
            dist.all_reduce(max_fc, dist.ReduceOp.MAX)

            # calculate exp(logits) and all-reduce
            logits_exp = torch.exp(logits - max_fc)
            logits_sum_exp = logits_exp.sum(dim=1, keepdims=True)
            dist.all_reduce(logits_sum_exp, dist.ReduceOp.SUM)

            # calculate prob
            logits_exp.div_(logits_sum_exp)

            # get one-hot
            grad = logits_exp
            index = torch.where(total_label != -1)[0]
            one_hot = torch.zeros(size=[index.size()[0], grad.size()[1]], device=grad.device)
            one_hot.scatter_(1, total_label[index, None], 1)

            # calculate loss
            loss = torch.zeros(grad.size()[0], 1, device=grad.device)
            loss[index] = grad[index].gather(1, total_label[index, None])
            dist.all_reduce(loss, dist.ReduceOp.SUM)
            loss_v = loss.clamp_min_(1e-30).log_().mean() * (-1)

            # calculate grad
            grad[index] -= one_hot
            grad.div_(self.batch_size * self.world_size)

        logits.backward(grad)
        if total_features.grad is not None:
            total_features.grad.detach_()
        x_grad: torch.Tensor = torch.zeros_like(features, requires_grad=True)
        # feature gradient all-reduce
        dist.reduce_scatter(x_grad, list(total_features.grad.chunk(self.world_size, dim=0)))
        x_grad = x_grad * self.world_size
        # backward backbone
        return x_grad, loss_v