Spaces:
Runtime error
Runtime error
File size: 3,286 Bytes
8c9c9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from typing import Dict, List
import torch
if torch.__version__ < '1.9':
Iterable = torch._six.container_abcs.Iterable
else:
import collections
Iterable = collections.abc.Iterable
from torch.cuda.amp import GradScaler
class _MultiDeviceReplicator(object):
"""
Lazily serves copies of a tensor to requested devices. Copies are cached per-device.
"""
def __init__(self, master_tensor: torch.Tensor) -> None:
assert master_tensor.is_cuda
self.master = master_tensor
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {}
def get(self, device) -> torch.Tensor:
retval = self._per_device_tensors.get(device, None)
if retval is None:
retval = self.master.to(device=device, non_blocking=True, copy=True)
self._per_device_tensors[device] = retval
return retval
class MaxClipGradScaler(GradScaler):
def __init__(self, init_scale, max_scale: float, growth_interval=100):
GradScaler.__init__(self, init_scale=init_scale, growth_interval=growth_interval)
self.max_scale = max_scale
def scale_clip(self):
if self.get_scale() == self.max_scale:
self.set_growth_factor(1)
elif self.get_scale() < self.max_scale:
self.set_growth_factor(2)
elif self.get_scale() > self.max_scale:
self._scale.fill_(self.max_scale)
self.set_growth_factor(1)
def scale(self, outputs):
"""
Multiplies ('scales') a tensor or list of tensors by the scale factor.
Returns scaled outputs. If this instance of :class:`GradScaler` is not enabled, outputs are returned
unmodified.
Arguments:
outputs (Tensor or iterable of Tensors): Outputs to scale.
"""
if not self._enabled:
return outputs
self.scale_clip()
# Short-circuit for the common case.
if isinstance(outputs, torch.Tensor):
assert outputs.is_cuda
if self._scale is None:
self._lazy_init_scale_growth_tracker(outputs.device)
assert self._scale is not None
return outputs * self._scale.to(device=outputs.device, non_blocking=True)
# Invoke the more complex machinery only if we're treating multiple outputs.
stash: List[_MultiDeviceReplicator] = [] # holds a reference that can be overwritten by apply_scale
def apply_scale(val):
if isinstance(val, torch.Tensor):
assert val.is_cuda
if len(stash) == 0:
if self._scale is None:
self._lazy_init_scale_growth_tracker(val.device)
assert self._scale is not None
stash.append(_MultiDeviceReplicator(self._scale))
return val * stash[0].get(val.device)
elif isinstance(val, Iterable):
iterable = map(apply_scale, val)
if isinstance(val, list) or isinstance(val, tuple):
return type(val)(iterable)
else:
return iterable
else:
raise ValueError("outputs must be a Tensor or an iterable of Tensors")
return apply_scale(outputs)
|