File size: 15,309 Bytes
73b78df
 
 
 
 
 
8417181
73b78df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095edeb
73b78df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710894a
73b78df
 
 
 
 
 
 
 
 
 
 
 
 
 
df4181d
 
73b78df
 
 
 
 
 
 
 
 
 
 
7e4ce8b
73b78df
0b78d59
 
eee368b
74b4608
ae7105e
 
 
 
 
 
 
 
 
eb8e058
ae7105e
 
 
df4181d
ae7105e
 
 
349445d
ae7105e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349445d
ae7105e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349445d
ae7105e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349445d
 
73b78df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f929974
73b78df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349445d
73b78df
 
 
349445d
 
 
 
 
0ae233d
 
 
 
 
 
0b78d59
 
 
73b78df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8477f8
73b78df
a8477f8
73b78df
4bc9607
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os, argparse
import sys
import gradio as gr
# from scripts.gradio.i2v_test_application import Image2Video
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
import spaces
from lvdm.models.samplers.ddim import DDIMSampler

import os
import time
from omegaconf import OmegaConf
import torch
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
from utils.utils import instantiate_from_config
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from pytorch_lightning import seed_everything
from einops import rearrange
from cldm.model import load_state_dict
import cv2

import torch
print("cuda available:", torch.cuda.is_available())


from huggingface_hub import snapshot_download
import os



def download_model():
    REPO_ID = 'fbnnb/TC_sketch'
    filename_list = ['tc_sketch.pt']
    tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/'
    if not os.path.exists(tar_dir):
        os.makedirs(tar_dir)
    for filename in filename_list:
        local_file = os.path.join(tar_dir, filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False)
    print("downloaded")
    

def get_latent_z_with_hidden_states(model, videos):
    b, c, t, h, w = videos.shape
    x = rearrange(videos, 'b c t h w -> (b t) c h w')
    encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)

    hidden_states_first_last = []
    ### use only the first and last hidden states
    for hid in hidden_states:
        hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
        hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
        hidden_states_first_last.append(hid_new)

    z = model.get_first_stage_encoding(encoder_posterior).detach()
    z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
    return z, hidden_states_first_last



def extract_frames(video_path):
    # 動画フゑむルをθͺ­γΏθΎΌγ‚€
    cap = cv2.VideoCapture(video_path)
    
    frame_list = [] 
    frame_num = 0
    
    while True:
        # フレームをθͺ­γΏθΎΌγ‚€
        ret, frame = cap.read()
        if not ret:
            break
        
        # フレームをγƒͺγ‚Ήγƒˆγ«θΏ½εŠ 
        frame_list.append(frame)
        frame_num += 1

    print("load video length:", len(frame_list))
    # ε‹•η”»γƒ•γ‚‘γ‚€γƒ«γ‚’ι–‰γ˜γ‚‹
    cap.release()
    
    return frame_list


resolution = '576_1024'
resolution = (576, 1024)
download_model()
print("after download model")
result_dir = "./results/"
if not os.path.exists(result_dir):
    os.mkdir(result_dir)

#ToonCrafterModel
ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc_sketch.pt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False  

model = instantiate_from_config(model_config).cuda()
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()

# cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))  
# cn_model.eval()

# model.control_model = cn_model    
# model_list.append(model)

save_fps = 8
print("resolution:", resolution)
print("init done.")



def transpose_if_needed(tensor):
    h = tensor.shape[-2]
    w = tensor.shape[-1]
    if h > w:
        tensor = tensor.permute(0, 2, 1)
    return tensor

def untranspose(tensor):
    ndim = tensor.ndim
    return tensor.transpose(ndim-1, ndim-2)

# [i2v_input_image, i2v_input_text, i2v_input_image, i2v_input_image2,  i2v_steps, i2v_eta, i2v_motion, i2v_seed],
@spaces.GPU(duration=200)
def get_image(image1, prompt, image2, dim_steps=50, ddim_eta=1., fs=None, seed=123, \
                        unconditional_guidance_scale=1.0, cfg_img=None,  text_input=False, multiple_cond_cfg=False, \
                        loop=False, interp=False, timestep_spacing='uniform', guidance_rescale=0.0, noise_shape=[72, 108], n_samples=1, **kwargs):

    with torch.no_grad():
        seed_everything(seed)
        video_size = (576, 1024)
        transform = transforms.Compose([
            transforms.Resize(min(video_size)),
            transforms.CenterCrop(video_size),
            # transforms.ToTensor(),
            # transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
        ])
    
        image1 = torch.from_numpy(image1).permute(2, 0, 1).float().cuda()
        input_h, input_w = image1.shape[1:]
        image1 = (image1 / 255. - 0.5) * 2
    
        image2 = torch.from_numpy(image2).permute(2, 0, 1).float().cuda()
        input_h, input_w = image2.shape[1:]
        image2 = (image2 / 255. - 0.5) * 2
    
        
        # image1 = Image.open(file_list[2*idx]).convert('RGB')
        image_tensor1 = transform(image1).unsqueeze(1) # [c,1,h,w]
        # image2 = Image.open(file_list[2*idx+1]).convert('RGB')
        image_tensor2 = transform(image2).unsqueeze(1) # [c,1,h,w]
        frame_tensor1 = repeat(image_tensor1, 'c t h w -> c (repeat t) h w', repeat=8)
        frame_tensor2 = repeat(image_tensor2, 'c t h w -> c (repeat t) h w', repeat=8)
        videos = torch.cat([frame_tensor1, frame_tensor2], dim=1).unsqueeze(0)
        # frame_tensor = torch.cat([frame_tensor1, frame_tensor1], dim=1)
        # _, filename = os.path.split(file_list[idx*2])
    
        global model
        model.cuda()
        
        ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
        batch_size = 1
        fs = torch.tensor([fs], dtype=torch.long, device=model.device)
    
        if not text_input:
            prompts = [""]*batch_size
    
        img = videos[:,:,0] #bchw
        img_emb = model.embedder(img) ## blc
        img_emb = model.image_proj_model(img_emb)
    
        cond_emb = model.get_learned_conditioning(prompts)
        cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]}
        if model.model.conditioning_key == 'hybrid':
            z, hs = get_latent_z_with_hidden_states(model, videos) # b c t h w
            if loop or interp:
                img_cat_cond = torch.zeros_like(z)
                img_cat_cond[:,:,0,:,:] = z[:,:,0,:,:]
                img_cat_cond[:,:,-1,:,:] = z[:,:,-1,:,:]
            else:
                img_cat_cond = z[:,:,:1,:,:]
                img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2])
            cond["c_concat"] = [img_cat_cond] # b c 1 h w
        
        if unconditional_guidance_scale != 1.0:
            if model.uncond_type == "empty_seq":
                prompts = batch_size * [""]
                uc_emb = model.get_learned_conditioning(prompts)
            elif model.uncond_type == "zero_embed":
                uc_emb = torch.zeros_like(cond_emb)
            uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c
            uc_img_emb = model.image_proj_model(uc_img_emb)
            uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]}
            if model.model.conditioning_key == 'hybrid':
                uc["c_concat"] = [img_cat_cond]
        else:
            uc = None
    #
        # for i, h in enumerate(hs):
            # print("h:", h.shape)
            # hs[i] = hs[i][:,:,0,:,:].unsqueeze(2)
        additional_decode_kwargs = {'ref_context': hs}
        # additional_decode_kwargs = {'ref_context': None}
    
        ## we need one more unconditioning image=yes, text=""
        if multiple_cond_cfg and cfg_img != 1.0:
            uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]}
            if model.model.conditioning_key == 'hybrid':
                uc_2["c_concat"] = [img_cat_cond]
            kwargs.update({"unconditional_conditioning_img_nonetext": uc_2})
        else:
            kwargs.update({"unconditional_conditioning_img_nonetext": None})
    
        z0 = None
        cond_mask = None
    
        batch_variants = []
        for _ in range(n_samples):
    
            if z0 is not None:
                cond_z0 = z0.clone()
                kwargs.update({"clean_cond": True})
            else:
                cond_z0 = None
            if ddim_sampler is not None:
    
                samples, _ = ddim_sampler.sample(S=ddim_steps,
                                                conditioning=cond,
                                                batch_size=batch_size,
                                                shape=noise_shape,
                                                verbose=False,
                                                unconditional_guidance_scale=unconditional_guidance_scale,
                                                unconditional_conditioning=uc,
                                                eta=ddim_eta,
                                                cfg_img=cfg_img, 
                                                mask=cond_mask,
                                                x0=cond_z0,
                                                fs=fs,
                                                timestep_spacing=timestep_spacing,
                                                guidance_rescale=guidance_rescale,
                                                **kwargs
                                                )
    
            ## reconstruct from latent to pixel space
            batch_images = model.decode_first_stage(samples, **additional_decode_kwargs)
    
            index = list(range(samples.shape[2]))
            del index[1]
            del index[-2]
            samples = samples[:,:,index,:,:]
            ## reconstruct from latent to pixel space
            batch_images_middle = model.decode_first_stage(samples, **additional_decode_kwargs)
            batch_images[:,:,batch_images.shape[2]//2-1:batch_images.shape[2]//2+1] = batch_images_middle[:,:,batch_images.shape[2]//2-2:batch_images.shape[2]//2]
    
    
    
            batch_variants.append(batch_images)
        ## variants, batch, c, t, h, w
        batch_variants = torch.stack(batch_variants)
        # return batch_variants.permute(1, 0, 2, 3, 4, 5)
    
        prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
        prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
        prompt_str=prompt_str[:40]
        if len(prompt_str) == 0:
            prompt_str = 'empty_prompt'
    
        result_dir = "./tmp/"
        save_videos(batch_image, result_dir, filenames=[prompt_str], fps=8)
        print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
        model = model.cpu()
        saved_result_dir = os.path.join(result_dir, f"{prompt_str}.mp4")
        print("result saved to:", saved_result_dir)
        return saved_result_dir

    

    


def dynamicrafter_demo(result_dir='./tmp/', res=1024):
    if res == 1024:
        resolution = '576_1024'
        css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px}"""
    elif res == 512:
        resolution = '320_512'
        css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px} #input_img2 {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""
    elif res == 256:
        resolution = '256_256'
        css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
    else:
        raise NotImplementedError(f"Unsupported resolution: {res}")
    # image2video = Image2Video(result_dir, resolution=resolution)
    with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:



        with gr.Tab(label='ToonCrafter_576x1024'):
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img")
                            # frame_guides = gr.Video(label="Input Guidance",elem_id="input_guidance", autoplay=True,show_share_button=True)
                        with gr.Row():
                            i2v_input_text = gr.Text(label='Prompts')
                        with gr.Row():
                            i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
                            i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
                            i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
                        with gr.Row():
                            i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
                            i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10)
                            control_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, elem_id="i2v_ctrl_scale", label="control_scale", value=0.6)
                        i2v_end_btn = gr.Button("Generate")
                    with gr.Column():
                        with gr.Row():
                            i2v_input_image2 = gr.Image(label="Input Image 2",elem_id="input_img2")
                        with gr.Row():
                            i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)


                # s(model, prompts, image1, image2, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
                #         unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, \
                #            loop=False, interp=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs):
                
                # gr.Examples(examples=i2v_examples_interp_1024,
                #             inputs=[i2v_input_image, i2v_input_text, i2v_input_image, i2v_input_image2, [72, 108], 1, i2v_steps, i2v_eta, 1.0, None, i2v_motion, i2v_seed],
                #             outputs=[i2v_output_video],
                #             fn = get_image,
                #             cache_examples=False,
                # )
            img_size = [72, 108]
            
            i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_input_image2, i2v_steps, i2v_eta, i2v_motion, i2v_seed],
                            outputs=[i2v_output_video],
                            fn = get_image
            )


    return dynamicrafter_iface


def get_parser():
    parser = argparse.ArgumentParser()
    return parser
    

if __name__ == "__main__":
    parser = get_parser()
    args = parser.parse_args()

    result_dir = os.path.join('./', 'results')
    dynamicrafter_iface = dynamicrafter_demo(result_dir)
    dynamicrafter_iface.queue(max_size=12)
    print("launching...")
    dynamicrafter_iface.launch(max_threads=1, share=True)
    
    # dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345)
    # dynamicrafter_iface.launch()
    # print("launched...")