File size: 15,309 Bytes
73b78df 8417181 73b78df 095edeb 73b78df 710894a 73b78df df4181d 73b78df 7e4ce8b 73b78df 0b78d59 eee368b 74b4608 ae7105e eb8e058 ae7105e df4181d ae7105e 349445d ae7105e 349445d ae7105e 349445d ae7105e 349445d 73b78df f929974 73b78df 349445d 73b78df 349445d 0ae233d 0b78d59 73b78df a8477f8 73b78df a8477f8 73b78df 4bc9607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os, argparse
import sys
import gradio as gr
# from scripts.gradio.i2v_test_application import Image2Video
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
import spaces
from lvdm.models.samplers.ddim import DDIMSampler
import os
import time
from omegaconf import OmegaConf
import torch
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
from utils.utils import instantiate_from_config
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from pytorch_lightning import seed_everything
from einops import rearrange
from cldm.model import load_state_dict
import cv2
import torch
print("cuda available:", torch.cuda.is_available())
from huggingface_hub import snapshot_download
import os
def download_model():
REPO_ID = 'fbnnb/TC_sketch'
filename_list = ['tc_sketch.pt']
tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/'
if not os.path.exists(tar_dir):
os.makedirs(tar_dir)
for filename in filename_list:
local_file = os.path.join(tar_dir, filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False)
print("downloaded")
def get_latent_z_with_hidden_states(model, videos):
b, c, t, h, w = videos.shape
x = rearrange(videos, 'b c t h w -> (b t) c h w')
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
hidden_states_first_last = []
### use only the first and last hidden states
for hid in hidden_states:
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
hidden_states_first_last.append(hid_new)
z = model.get_first_stage_encoding(encoder_posterior).detach()
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
return z, hidden_states_first_last
def extract_frames(video_path):
# εη»γγ‘γ€γ«γθͺγΏθΎΌγ
cap = cv2.VideoCapture(video_path)
frame_list = []
frame_num = 0
while True:
# γγ¬γΌγ γθͺγΏθΎΌγ
ret, frame = cap.read()
if not ret:
break
# γγ¬γΌγ γγͺγΉγγ«θΏ½ε
frame_list.append(frame)
frame_num += 1
print("load video length:", len(frame_list))
# εη»γγ‘γ€γ«γιγγ
cap.release()
return frame_list
resolution = '576_1024'
resolution = (576, 1024)
download_model()
print("after download model")
result_dir = "./results/"
if not os.path.exists(result_dir):
os.mkdir(result_dir)
#ToonCrafterModel
ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc_sketch.pt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config).cuda()
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
# cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))
# cn_model.eval()
# model.control_model = cn_model
# model_list.append(model)
save_fps = 8
print("resolution:", resolution)
print("init done.")
def transpose_if_needed(tensor):
h = tensor.shape[-2]
w = tensor.shape[-1]
if h > w:
tensor = tensor.permute(0, 2, 1)
return tensor
def untranspose(tensor):
ndim = tensor.ndim
return tensor.transpose(ndim-1, ndim-2)
# [i2v_input_image, i2v_input_text, i2v_input_image, i2v_input_image2, i2v_steps, i2v_eta, i2v_motion, i2v_seed],
@spaces.GPU(duration=200)
def get_image(image1, prompt, image2, dim_steps=50, ddim_eta=1., fs=None, seed=123, \
unconditional_guidance_scale=1.0, cfg_img=None, text_input=False, multiple_cond_cfg=False, \
loop=False, interp=False, timestep_spacing='uniform', guidance_rescale=0.0, noise_shape=[72, 108], n_samples=1, **kwargs):
with torch.no_grad():
seed_everything(seed)
video_size = (576, 1024)
transform = transforms.Compose([
transforms.Resize(min(video_size)),
transforms.CenterCrop(video_size),
# transforms.ToTensor(),
# transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
image1 = torch.from_numpy(image1).permute(2, 0, 1).float().cuda()
input_h, input_w = image1.shape[1:]
image1 = (image1 / 255. - 0.5) * 2
image2 = torch.from_numpy(image2).permute(2, 0, 1).float().cuda()
input_h, input_w = image2.shape[1:]
image2 = (image2 / 255. - 0.5) * 2
# image1 = Image.open(file_list[2*idx]).convert('RGB')
image_tensor1 = transform(image1).unsqueeze(1) # [c,1,h,w]
# image2 = Image.open(file_list[2*idx+1]).convert('RGB')
image_tensor2 = transform(image2).unsqueeze(1) # [c,1,h,w]
frame_tensor1 = repeat(image_tensor1, 'c t h w -> c (repeat t) h w', repeat=8)
frame_tensor2 = repeat(image_tensor2, 'c t h w -> c (repeat t) h w', repeat=8)
videos = torch.cat([frame_tensor1, frame_tensor2], dim=1).unsqueeze(0)
# frame_tensor = torch.cat([frame_tensor1, frame_tensor1], dim=1)
# _, filename = os.path.split(file_list[idx*2])
global model
model.cuda()
ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
batch_size = 1
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
if not text_input:
prompts = [""]*batch_size
img = videos[:,:,0] #bchw
img_emb = model.embedder(img) ## blc
img_emb = model.image_proj_model(img_emb)
cond_emb = model.get_learned_conditioning(prompts)
cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]}
if model.model.conditioning_key == 'hybrid':
z, hs = get_latent_z_with_hidden_states(model, videos) # b c t h w
if loop or interp:
img_cat_cond = torch.zeros_like(z)
img_cat_cond[:,:,0,:,:] = z[:,:,0,:,:]
img_cat_cond[:,:,-1,:,:] = z[:,:,-1,:,:]
else:
img_cat_cond = z[:,:,:1,:,:]
img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2])
cond["c_concat"] = [img_cat_cond] # b c 1 h w
if unconditional_guidance_scale != 1.0:
if model.uncond_type == "empty_seq":
prompts = batch_size * [""]
uc_emb = model.get_learned_conditioning(prompts)
elif model.uncond_type == "zero_embed":
uc_emb = torch.zeros_like(cond_emb)
uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c
uc_img_emb = model.image_proj_model(uc_img_emb)
uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]}
if model.model.conditioning_key == 'hybrid':
uc["c_concat"] = [img_cat_cond]
else:
uc = None
#
# for i, h in enumerate(hs):
# print("h:", h.shape)
# hs[i] = hs[i][:,:,0,:,:].unsqueeze(2)
additional_decode_kwargs = {'ref_context': hs}
# additional_decode_kwargs = {'ref_context': None}
## we need one more unconditioning image=yes, text=""
if multiple_cond_cfg and cfg_img != 1.0:
uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]}
if model.model.conditioning_key == 'hybrid':
uc_2["c_concat"] = [img_cat_cond]
kwargs.update({"unconditional_conditioning_img_nonetext": uc_2})
else:
kwargs.update({"unconditional_conditioning_img_nonetext": None})
z0 = None
cond_mask = None
batch_variants = []
for _ in range(n_samples):
if z0 is not None:
cond_z0 = z0.clone()
kwargs.update({"clean_cond": True})
else:
cond_z0 = None
if ddim_sampler is not None:
samples, _ = ddim_sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=batch_size,
shape=noise_shape,
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
cfg_img=cfg_img,
mask=cond_mask,
x0=cond_z0,
fs=fs,
timestep_spacing=timestep_spacing,
guidance_rescale=guidance_rescale,
**kwargs
)
## reconstruct from latent to pixel space
batch_images = model.decode_first_stage(samples, **additional_decode_kwargs)
index = list(range(samples.shape[2]))
del index[1]
del index[-2]
samples = samples[:,:,index,:,:]
## reconstruct from latent to pixel space
batch_images_middle = model.decode_first_stage(samples, **additional_decode_kwargs)
batch_images[:,:,batch_images.shape[2]//2-1:batch_images.shape[2]//2+1] = batch_images_middle[:,:,batch_images.shape[2]//2-2:batch_images.shape[2]//2]
batch_variants.append(batch_images)
## variants, batch, c, t, h, w
batch_variants = torch.stack(batch_variants)
# return batch_variants.permute(1, 0, 2, 3, 4, 5)
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
prompt_str=prompt_str[:40]
if len(prompt_str) == 0:
prompt_str = 'empty_prompt'
result_dir = "./tmp/"
save_videos(batch_image, result_dir, filenames=[prompt_str], fps=8)
print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
model = model.cpu()
saved_result_dir = os.path.join(result_dir, f"{prompt_str}.mp4")
print("result saved to:", saved_result_dir)
return saved_result_dir
def dynamicrafter_demo(result_dir='./tmp/', res=1024):
if res == 1024:
resolution = '576_1024'
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px}"""
elif res == 512:
resolution = '320_512'
css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px} #input_img2 {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""
elif res == 256:
resolution = '256_256'
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
else:
raise NotImplementedError(f"Unsupported resolution: {res}")
# image2video = Image2Video(result_dir, resolution=resolution)
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
with gr.Tab(label='ToonCrafter_576x1024'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img")
# frame_guides = gr.Video(label="Input Guidance",elem_id="input_guidance", autoplay=True,show_share_button=True)
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10)
control_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, elem_id="i2v_ctrl_scale", label="control_scale", value=0.6)
i2v_end_btn = gr.Button("Generate")
with gr.Column():
with gr.Row():
i2v_input_image2 = gr.Image(label="Input Image 2",elem_id="input_img2")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
# s(model, prompts, image1, image2, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
# unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, \
# loop=False, interp=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs):
# gr.Examples(examples=i2v_examples_interp_1024,
# inputs=[i2v_input_image, i2v_input_text, i2v_input_image, i2v_input_image2, [72, 108], 1, i2v_steps, i2v_eta, 1.0, None, i2v_motion, i2v_seed],
# outputs=[i2v_output_video],
# fn = get_image,
# cache_examples=False,
# )
img_size = [72, 108]
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_input_image2, i2v_steps, i2v_eta, i2v_motion, i2v_seed],
outputs=[i2v_output_video],
fn = get_image
)
return dynamicrafter_iface
def get_parser():
parser = argparse.ArgumentParser()
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
result_dir = os.path.join('./', 'results')
dynamicrafter_iface = dynamicrafter_demo(result_dir)
dynamicrafter_iface.queue(max_size=12)
print("launching...")
dynamicrafter_iface.launch(max_threads=1, share=True)
# dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345)
# dynamicrafter_iface.launch()
# print("launched...") |