fbnnb commited on
Commit
c969dc6
·
verified ·
1 Parent(s): ba024fd

Update scripts/gradio/i2v_test_application.py

Browse files
Files changed (1) hide show
  1. scripts/gradio/i2v_test_application.py +228 -228
scripts/gradio/i2v_test_application.py CHANGED
@@ -1,229 +1,229 @@
1
- import os
2
- import time
3
- from omegaconf import OmegaConf
4
- import torch
5
- from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
6
- from utils.utils import instantiate_from_config
7
- from huggingface_hub import hf_hub_download
8
- from einops import repeat
9
- import torchvision.transforms as transforms
10
- from pytorch_lightning import seed_everything
11
- from einops import rearrange
12
- from cldm.model import load_state_dict
13
- import cv2
14
-
15
-
16
- def extract_frames(video_path):
17
- # 動画ファイルを読み込む
18
- cap = cv2.VideoCapture(video_path)
19
-
20
- frame_list = []
21
- frame_num = 0
22
-
23
- while True:
24
- # フレームを読み込む
25
- ret, frame = cap.read()
26
- if not ret:
27
- break
28
-
29
- # フレームをリストに追加
30
- frame_list.append(frame)
31
- frame_num += 1
32
-
33
- # 動画ファイルを閉じる
34
- cap.release()
35
-
36
- return frame_list
37
-
38
- class Image2Video():
39
- def __init__(self,result_dir='./tmp/',gpu_num=1,resolution='256_256') -> None:
40
- self.resolution = (int(resolution.split('_')[0]), int(resolution.split('_')[1])) #hw
41
- self.download_model()
42
-
43
- self.result_dir = result_dir
44
- if not os.path.exists(self.result_dir):
45
- os.mkdir(self.result_dir)
46
-
47
- #ToonCrafterModel
48
- ckpt_path='checkpoints/tooncrafter_'+resolution.split('_')[1]+'_interp_v1/model.ckpt'
49
- config_file='configs/inference_'+resolution.split('_')[1]+'_v1.0.yaml'
50
- config = OmegaConf.load(config_file)
51
- model_config = config.pop("model", OmegaConf.create())
52
- model_config['params']['unet_config']['params']['use_checkpoint']=False
53
-
54
- #ControlModel
55
- cn_ckpt_path = "control_models/sketch_encoder.ckpt"
56
- cn_config_file = 'configs/cldm_v21.yaml'
57
- cn_config = OmegaConf.load(cn_config_file)
58
- cn_model_config = cn_config.pop("control_stage_config", OmegaConf.create())
59
-
60
-
61
- model_list = []
62
- for gpu_id in range(gpu_num):
63
- model = instantiate_from_config(model_config)
64
- cn_model = instantiate_from_config(cn_model_config)
65
-
66
- # model = model.cuda(gpu_id)
67
- assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
68
- model = load_model_checkpoint(model, ckpt_path)
69
- model.eval()
70
-
71
- cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cuda'))
72
- cn_model.eval()
73
-
74
- model.control_model = cn_model
75
-
76
- model_list.append(model)
77
- self.model_list = model_list
78
- self.save_fps = 8
79
-
80
- def get_image(self, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, image2=None, frame_guides=None,control_scale=0.6):
81
- control_frames = extract_frames(frame_guides)
82
- seed_everything(seed)
83
- transform = transforms.Compose([
84
- transforms.Resize(min(self.resolution)),
85
- transforms.CenterCrop(self.resolution),
86
- ])
87
- torch.cuda.empty_cache()
88
- print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
89
- start = time.time()
90
- gpu_id=0
91
- if steps > 60:
92
- steps = 60
93
- model = self.model_list[gpu_id]
94
- model = model.cuda()
95
- batch_size=1
96
- channels = model.model.diffusion_model.out_channels
97
- frames = model.temporal_length
98
- h, w = self.resolution[0] // 8, self.resolution[1] // 8
99
- noise_shape = [batch_size, channels, frames, h, w]
100
-
101
- # text cond
102
- with torch.no_grad(), torch.cuda.amp.autocast():
103
- text_emb = model.get_learned_conditioning([prompt])
104
-
105
- #control cond
106
- if frame_guides is not None:
107
- cn_videos = []
108
- for frame in control_frames:
109
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
110
- frame = cv2.bitwise_not(frame)
111
- cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device)
112
-
113
- #cn_tensor = (cn_tensor / 255. - 0.5) * 2
114
- cn_tensor = ( cn_tensor/255.0 )
115
- cn_tensor_resized = transform(cn_tensor) #3,h,w
116
-
117
- cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
118
- cn_videos.append(cn_video)
119
-
120
- cn_videos = torch.cat(cn_videos, dim=2)
121
- model_list = []
122
- for model in self.model_list:
123
- model.control_scale = control_scale
124
- model_list.append(model)
125
- self.model_list = model_list
126
-
127
- else:
128
- cn_videos = None
129
-
130
-
131
-
132
- # img cond
133
- img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
134
- img_tensor = (img_tensor / 255. - 0.5) * 2
135
-
136
- image_tensor_resized = transform(img_tensor) #3,h,w
137
- videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
138
-
139
- # z = get_latent_z(model, videos) #bc,1,hw
140
- videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
141
-
142
- img_tensor2 = torch.from_numpy(image2).permute(2, 0, 1).float().to(model.device)
143
- img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
144
- image_tensor_resized2 = transform(img_tensor2) #3,h,w
145
- videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw
146
- videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
147
-
148
-
149
- videos = torch.cat([videos, videos2], dim=2)
150
- z, hs = self.get_latent_z_with_hidden_states(model, videos)
151
-
152
- img_tensor_repeat = torch.zeros_like(z)
153
-
154
- img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
155
- img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]
156
-
157
-
158
- cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
159
- img_emb = model.image_proj_model(cond_images)
160
-
161
- imtext_cond = torch.cat([text_emb, img_emb], dim=1)
162
-
163
- fs = torch.tensor([fs], dtype=torch.long, device=model.device)
164
- cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos}
165
-
166
- ## inference
167
- batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)
168
-
169
- ## remove the last frame
170
- if image2 is None:
171
- batch_samples = batch_samples[:,:,:,:-1,...]
172
- ## b,samples,c,t,h,w
173
- prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
174
- prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
175
- prompt_str=prompt_str[:40]
176
- if len(prompt_str) == 0:
177
- prompt_str = 'empty_prompt'
178
-
179
- save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
180
- print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
181
- model = model.cpu()
182
- result_dir = os.path.join("/group/40034/gzhiwang/ToonCrafter_with_SketchGuidance", f"{prompt_str}.mp4")
183
- print("result saved to:", result_dir)
184
- return result_dir
185
-
186
- # import torchvision
187
- # batch_tensors = batch_samples
188
- # n_samples = batch_tensors.shape[1]
189
- # for idx, vid_tensor in enumerate(batch_tensors):
190
- # video = vid_tensor.detach().cpu()
191
- # video = torch.clamp(video.float(), -1., 1.)
192
- # video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
193
- # frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
194
- # grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
195
- # grid = (grid + 1.0) / 2.0
196
- # grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
197
- # # savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
198
- # # torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
199
- # return grid
200
-
201
- def download_model(self):
202
- REPO_ID = 'Doubiiu/ToonCrafter'
203
- filename_list = ['model.ckpt']
204
- if not os.path.exists('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/'):
205
- os.makedirs('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/')
206
- for filename in filename_list:
207
- local_file = os.path.join('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', filename)
208
- if not os.path.exists(local_file):
209
- hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', local_dir_use_symlinks=False)
210
-
211
- def get_latent_z_with_hidden_states(self, model, videos):
212
- b, c, t, h, w = videos.shape
213
- x = rearrange(videos, 'b c t h w -> (b t) c h w')
214
- encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
215
-
216
- hidden_states_first_last = []
217
- ### use only the first and last hidden states
218
- for hid in hidden_states:
219
- hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
220
- hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
221
- hidden_states_first_last.append(hid_new)
222
-
223
- z = model.get_first_stage_encoding(encoder_posterior).detach()
224
- z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
225
- return z, hidden_states_first_last
226
- if __name__ == '__main__':
227
- i2v = Image2Video()
228
- video_path = i2v.get_image('prompts/art.png','man fishing in a boat at sunset')
229
  print('done', video_path)
 
1
+ import os
2
+ import time
3
+ from omegaconf import OmegaConf
4
+ import torch
5
+ from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
6
+ from utils.utils import instantiate_from_config
7
+ from huggingface_hub import hf_hub_download
8
+ from einops import repeat
9
+ import torchvision.transforms as transforms
10
+ from pytorch_lightning import seed_everything
11
+ from einops import rearrange
12
+ from cldm.model import load_state_dict
13
+ import cv2
14
+
15
+
16
+ def extract_frames(video_path):
17
+ # 動画ファイルを読み込む
18
+ cap = cv2.VideoCapture(video_path)
19
+
20
+ frame_list = []
21
+ frame_num = 0
22
+
23
+ while True:
24
+ # フレームを読み込む
25
+ ret, frame = cap.read()
26
+ if not ret:
27
+ break
28
+
29
+ # フレームをリストに追加
30
+ frame_list.append(frame)
31
+ frame_num += 1
32
+
33
+ # 動画ファイルを閉じる
34
+ cap.release()
35
+
36
+ return frame_list
37
+
38
+ class Image2Video():
39
+ def __init__(self,result_dir='./tmp/',gpu_num=1,resolution='256_256') -> None:
40
+ self.resolution = (int(resolution.split('_')[0]), int(resolution.split('_')[1])) #hw
41
+ self.download_model()
42
+
43
+ self.result_dir = result_dir
44
+ if not os.path.exists(self.result_dir):
45
+ os.mkdir(self.result_dir)
46
+
47
+ #ToonCrafterModel
48
+ ckpt_path='checkpoints/tooncrafter_'+resolution.split('_')[1]+'_interp_v1/model.ckpt'
49
+ config_file='configs/inference_'+resolution.split('_')[1]+'_v1.0.yaml'
50
+ config = OmegaConf.load(config_file)
51
+ model_config = config.pop("model", OmegaConf.create())
52
+ model_config['params']['unet_config']['params']['use_checkpoint']=False
53
+
54
+ #ControlModel
55
+ cn_ckpt_path = "control_models/sketch_encoder.ckpt"
56
+ cn_config_file = 'configs/cldm_v21.yaml'
57
+ cn_config = OmegaConf.load(cn_config_file)
58
+ cn_model_config = cn_config.pop("control_stage_config", OmegaConf.create())
59
+
60
+
61
+ model_list = []
62
+ for gpu_id in range(gpu_num):
63
+ model = instantiate_from_config(model_config)
64
+ cn_model = instantiate_from_config(cn_model_config)
65
+
66
+ # model = model.cuda(gpu_id)
67
+ assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
68
+ model = load_model_checkpoint(model, ckpt_path)
69
+ model.eval()
70
+
71
+ cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))
72
+ cn_model.eval()
73
+
74
+ model.control_model = cn_model
75
+
76
+ model_list.append(model)
77
+ self.model_list = model_list
78
+ self.save_fps = 8
79
+
80
+ def get_image(self, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, image2=None, frame_guides=None,control_scale=0.6):
81
+ control_frames = extract_frames(frame_guides)
82
+ seed_everything(seed)
83
+ transform = transforms.Compose([
84
+ transforms.Resize(min(self.resolution)),
85
+ transforms.CenterCrop(self.resolution),
86
+ ])
87
+ torch.cuda.empty_cache()
88
+ print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
89
+ start = time.time()
90
+ gpu_id=0
91
+ if steps > 60:
92
+ steps = 60
93
+ model = self.model_list[gpu_id]
94
+ model = model.cuda()
95
+ batch_size=1
96
+ channels = model.model.diffusion_model.out_channels
97
+ frames = model.temporal_length
98
+ h, w = self.resolution[0] // 8, self.resolution[1] // 8
99
+ noise_shape = [batch_size, channels, frames, h, w]
100
+
101
+ # text cond
102
+ with torch.no_grad(), torch.cuda.amp.autocast():
103
+ text_emb = model.get_learned_conditioning([prompt])
104
+
105
+ #control cond
106
+ if frame_guides is not None:
107
+ cn_videos = []
108
+ for frame in control_frames:
109
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
110
+ frame = cv2.bitwise_not(frame)
111
+ cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device)
112
+
113
+ #cn_tensor = (cn_tensor / 255. - 0.5) * 2
114
+ cn_tensor = ( cn_tensor/255.0 )
115
+ cn_tensor_resized = transform(cn_tensor) #3,h,w
116
+
117
+ cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
118
+ cn_videos.append(cn_video)
119
+
120
+ cn_videos = torch.cat(cn_videos, dim=2)
121
+ model_list = []
122
+ for model in self.model_list:
123
+ model.control_scale = control_scale
124
+ model_list.append(model)
125
+ self.model_list = model_list
126
+
127
+ else:
128
+ cn_videos = None
129
+
130
+
131
+
132
+ # img cond
133
+ img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
134
+ img_tensor = (img_tensor / 255. - 0.5) * 2
135
+
136
+ image_tensor_resized = transform(img_tensor) #3,h,w
137
+ videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
138
+
139
+ # z = get_latent_z(model, videos) #bc,1,hw
140
+ videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
141
+
142
+ img_tensor2 = torch.from_numpy(image2).permute(2, 0, 1).float().to(model.device)
143
+ img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
144
+ image_tensor_resized2 = transform(img_tensor2) #3,h,w
145
+ videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw
146
+ videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
147
+
148
+
149
+ videos = torch.cat([videos, videos2], dim=2)
150
+ z, hs = self.get_latent_z_with_hidden_states(model, videos)
151
+
152
+ img_tensor_repeat = torch.zeros_like(z)
153
+
154
+ img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
155
+ img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]
156
+
157
+
158
+ cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
159
+ img_emb = model.image_proj_model(cond_images)
160
+
161
+ imtext_cond = torch.cat([text_emb, img_emb], dim=1)
162
+
163
+ fs = torch.tensor([fs], dtype=torch.long, device=model.device)
164
+ cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos}
165
+
166
+ ## inference
167
+ batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)
168
+
169
+ ## remove the last frame
170
+ if image2 is None:
171
+ batch_samples = batch_samples[:,:,:,:-1,...]
172
+ ## b,samples,c,t,h,w
173
+ prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
174
+ prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
175
+ prompt_str=prompt_str[:40]
176
+ if len(prompt_str) == 0:
177
+ prompt_str = 'empty_prompt'
178
+
179
+ save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
180
+ print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
181
+ model = model.cpu()
182
+ result_dir = os.path.join("/group/40034/gzhiwang/ToonCrafter_with_SketchGuidance", f"{prompt_str}.mp4")
183
+ print("result saved to:", result_dir)
184
+ return result_dir
185
+
186
+ # import torchvision
187
+ # batch_tensors = batch_samples
188
+ # n_samples = batch_tensors.shape[1]
189
+ # for idx, vid_tensor in enumerate(batch_tensors):
190
+ # video = vid_tensor.detach().cpu()
191
+ # video = torch.clamp(video.float(), -1., 1.)
192
+ # video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
193
+ # frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
194
+ # grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
195
+ # grid = (grid + 1.0) / 2.0
196
+ # grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
197
+ # # savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
198
+ # # torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
199
+ # return grid
200
+
201
+ def download_model(self):
202
+ REPO_ID = 'Doubiiu/ToonCrafter'
203
+ filename_list = ['model.ckpt']
204
+ if not os.path.exists('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/'):
205
+ os.makedirs('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/')
206
+ for filename in filename_list:
207
+ local_file = os.path.join('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', filename)
208
+ if not os.path.exists(local_file):
209
+ hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', local_dir_use_symlinks=False)
210
+
211
+ def get_latent_z_with_hidden_states(self, model, videos):
212
+ b, c, t, h, w = videos.shape
213
+ x = rearrange(videos, 'b c t h w -> (b t) c h w')
214
+ encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
215
+
216
+ hidden_states_first_last = []
217
+ ### use only the first and last hidden states
218
+ for hid in hidden_states:
219
+ hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
220
+ hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
221
+ hidden_states_first_last.append(hid_new)
222
+
223
+ z = model.get_first_stage_encoding(encoder_posterior).detach()
224
+ z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
225
+ return z, hidden_states_first_last
226
+ if __name__ == '__main__':
227
+ i2v = Image2Video()
228
+ video_path = i2v.get_image('prompts/art.png','man fishing in a boat at sunset')
229
  print('done', video_path)