fbnnb commited on
Commit
42c0eb9
1 Parent(s): 7dc40d6

Upload 65 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +362 -0
  2. configs/.DS_Store +0 -0
  3. configs/inference_1024_v1.0.yaml +103 -0
  4. configs/inference_512_v1.0.yaml +103 -0
  5. configs/training_1024_v1.0/config.yaml +166 -0
  6. configs/training_1024_v1.0/run.sh +37 -0
  7. configs/training_512_v1.0/config.yaml +166 -0
  8. configs/training_512_v1.0/run.sh +37 -0
  9. lvdm/.DS_Store +0 -0
  10. lvdm/basics.py +100 -0
  11. lvdm/common.py +94 -0
  12. lvdm/data/base.py +23 -0
  13. lvdm/data/webvid.py +202 -0
  14. lvdm/distributions.py +95 -0
  15. lvdm/ema.py +76 -0
  16. lvdm/models/autoencoder.py +275 -0
  17. lvdm/models/autoencoder_dualref.py +1178 -0
  18. lvdm/models/ddpm3d.py +1312 -0
  19. lvdm/models/samplers/ddim.py +317 -0
  20. lvdm/models/samplers/ddim_multiplecond.py +323 -0
  21. lvdm/models/utils_diffusion.py +158 -0
  22. lvdm/modules/attention.py +514 -0
  23. lvdm/modules/attention_svd.py +759 -0
  24. lvdm/modules/encoders/condition.py +389 -0
  25. lvdm/modules/encoders/resampler.py +145 -0
  26. lvdm/modules/networks/ae_modules.py +856 -0
  27. lvdm/modules/networks/openaimodel3d.py +603 -0
  28. lvdm/modules/x_transformer.py +639 -0
  29. main/callbacks.py +133 -0
  30. main/trainer.py +168 -0
  31. main/utils_data.py +136 -0
  32. main/utils_train.py +173 -0
  33. prompts/.DS_Store +0 -0
  34. prompts/1024_interp/74906_1462_frame1.png +0 -0
  35. prompts/1024_interp/74906_1462_frame3.png +0 -0
  36. prompts/1024_interp/Japan_v2_2_062266_s2_frame1.png +0 -0
  37. prompts/1024_interp/Japan_v2_2_062266_s2_frame3.png +0 -0
  38. prompts/1024_interp/Japan_v2_3_119235_s2_frame1.png +0 -0
  39. prompts/1024_interp/Japan_v2_3_119235_s2_frame3.png +0 -0
  40. prompts/1024_interp/interp_1_1.png +0 -0
  41. prompts/1024_interp/interp_1_2.png +0 -0
  42. prompts/1024_interp/interp_2_1.png +0 -0
  43. prompts/1024_interp/interp_2_2.png +0 -0
  44. prompts/512_interp/74906_1462_frame1.png +0 -0
  45. prompts/512_interp/74906_1462_frame3.png +0 -0
  46. prompts/512_interp/Japan_v2_2_062266_s2_frame1.png +0 -0
  47. prompts/512_interp/Japan_v2_2_062266_s2_frame3.png +0 -0
  48. prompts/512_interp/Japan_v2_3_119235_s2_frame1.png +0 -0
  49. prompts/512_interp/Japan_v2_3_119235_s2_frame3.png +0 -0
  50. prompts/512_interp/prompts.txt +3 -0
app.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, argparse
2
+ import sys
3
+ import gradio as gr
4
+ # from scripts.gradio.i2v_test_application import Image2Video
5
+ sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
6
+ import spaces
7
+
8
+
9
+ import os
10
+ import time
11
+ from omegaconf import OmegaConf
12
+ import torch
13
+ from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
14
+ from utils.utils import instantiate_from_config
15
+ from huggingface_hub import hf_hub_download
16
+ from einops import repeat
17
+ import torchvision.transforms as transforms
18
+ from pytorch_lightning import seed_everything
19
+ from einops import rearrange
20
+ import cv2
21
+
22
+ import torch
23
+ print("cuda available:", torch.cuda.is_available())
24
+
25
+
26
+ from huggingface_hub import snapshot_download
27
+ import os
28
+
29
+
30
+
31
+ def download_model():
32
+ REPO_ID = 'fbnnb/tc_1024'
33
+ filename_list = ['tc1024_4k.ckpt']
34
+ tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/'
35
+ if not os.path.exists(tar_dir):
36
+ os.makedirs(tar_dir)
37
+ for filename in filename_list:
38
+ local_file = os.path.join(tar_dir, filename)
39
+ if not os.path.exists(local_file):
40
+ hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False)
41
+ print("downloaded")
42
+
43
+
44
+ def get_latent_z_with_hidden_states(model, videos):
45
+ b, c, t, h, w = videos.shape
46
+ x = rearrange(videos, 'b c t h w -> (b t) c h w')
47
+ encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
48
+
49
+ hidden_states_first_last = []
50
+ ### use only the first and last hidden states
51
+ for hid in hidden_states:
52
+ hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
53
+ hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
54
+ hidden_states_first_last.append(hid_new)
55
+
56
+ z = model.get_first_stage_encoding(encoder_posterior).detach()
57
+ z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
58
+ return z, hidden_states_first_last
59
+
60
+
61
+
62
+ def extract_frames(video_path):
63
+ # 動画ファイルを読み込む
64
+ cap = cv2.VideoCapture(video_path)
65
+
66
+ frame_list = []
67
+ frame_num = 0
68
+
69
+ while True:
70
+ # フレームを読み込む
71
+ ret, frame = cap.read()
72
+ if not ret:
73
+ break
74
+
75
+ # フレームをリストに追加
76
+ frame_list.append(frame)
77
+ frame_num += 1
78
+
79
+ print("load video length:", len(frame_list))
80
+ # 動画ファイルを閉じる
81
+ cap.release()
82
+
83
+ return frame_list
84
+
85
+
86
+ resolution = '576_1024'
87
+ resolution = (576, 1024)
88
+ download_model()
89
+ print("after download model")
90
+ result_dir = "./results/"
91
+ if not os.path.exists(result_dir):
92
+ os.mkdir(result_dir)
93
+
94
+ #ToonCrafterModel
95
+ ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc1024_4k.ckpt'
96
+ # ckpt_path="/group/40005/gzhiwang/tc1024_4k.ckpt"
97
+ config_file='configs/inference_1024_v1.0.yaml'
98
+ config = OmegaConf.load(config_file)
99
+ model_config = config.pop("model", OmegaConf.create())
100
+ model_config['params']['unet_config']['params']['use_checkpoint']=False
101
+
102
+ model = instantiate_from_config(model_config)
103
+ assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
104
+ # model = load_model_checkpoint(model, ckpt_path)
105
+ state = torch.load(ckpt_path, map_location='cpu')
106
+ if 'state_dict' in state:
107
+ state = state['state_dict']
108
+ if 'module' in state:
109
+ state = state['module']
110
+
111
+ missing, unexpected = model.load_state_dict(state, strict=False)
112
+ print("missing:", missing)
113
+ print("unexpected:", unexpected)
114
+ model.eval()
115
+
116
+ # cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))
117
+ # cn_model.eval()
118
+
119
+ # model.control_model = cn_model
120
+ # model_list.append(model)
121
+
122
+ save_fps = 8
123
+ print("resolution:", resolution)
124
+ print("init done.")
125
+
126
+ def transpose_if_needed(tensor):
127
+ h = tensor.shape[-2]
128
+ w = tensor.shape[-1]
129
+ if h > w:
130
+ tensor = tensor.permute(0, 2, 1)
131
+ return tensor
132
+
133
+ def untranspose(tensor):
134
+ ndim = tensor.ndim
135
+ return tensor.transpose(ndim-1, ndim-2)
136
+
137
+ @spaces.GPU(duration=200)
138
+ def get_image(image, sketch, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, control_scale=0.6):
139
+ print("enter fn")
140
+ # control_frames = extract_frames(frame_guides)
141
+ print("extract frames")
142
+ seed_everything(seed)
143
+ transform = transforms.Compose([
144
+ transforms.Resize(min(resolution)),
145
+ transforms.CenterCrop(resolution),
146
+ ])
147
+ print("before empty cache")
148
+ torch.cuda.empty_cache()
149
+ print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
150
+ start = time.time()
151
+ gpu_id=0
152
+ if steps > 60:
153
+ steps = 60
154
+
155
+ global model
156
+ # model = model_list[gpu_id]
157
+ model = model.cuda()
158
+
159
+ batch_size=1
160
+ channels = model.model.diffusion_model.out_channels
161
+ frames = model.temporal_length
162
+ h, w = resolution[0] // 8, resolution[1] // 8
163
+ noise_shape = [batch_size, channels, frames, h, w]
164
+
165
+ # text cond
166
+ transposed = False
167
+ with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16):
168
+ text_emb = model.get_learned_conditioning([prompt])
169
+ print("before control")
170
+ #control cond
171
+ # if frame_guides is not None:
172
+ # cn_videos = []
173
+ # for frame in control_frames:
174
+ # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
175
+ # frame = cv2.bitwise_not(frame)
176
+ # cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device)
177
+
178
+ # #cn_tensor = (cn_tensor / 255. - 0.5) * 2
179
+ # cn_tensor = ( cn_tensor/255.0 )
180
+ # cn_tensor = transpose_if_needed(cn_tensor)
181
+ # cn_tensor_resized = transform(cn_tensor) #3,h,w
182
+
183
+ # cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
184
+ # cn_videos.append(cn_video)
185
+
186
+ # cn_videos = torch.cat(cn_videos, dim=2)
187
+ # if cn_videos.shape[2] > frames:
188
+ # idxs = []
189
+ # for i in range(frames):
190
+ # index = int((i + 0.5) * cn_videos.shape[2] / frames)
191
+ # idxs.append(min(index, cn_videos.shape[2] - 1))
192
+ # cn_videos = cn_videos[:, :, idxs, :, :]
193
+ # print("cn_videos.shape after slicing", cn_videos.shape)
194
+ # model_list = []
195
+ # for model in model_list:
196
+ # model.control_scale = control_scale
197
+ # model_list.append(model)
198
+
199
+ # else:
200
+ cn_videos = None
201
+
202
+ print("image cond")
203
+
204
+ # img cond
205
+ img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
206
+ input_h, input_w = img_tensor.shape[1:]
207
+ img_tensor = (img_tensor / 255. - 0.5) * 2
208
+ img_tensor = transpose_if_needed(img_tensor)
209
+
210
+ image_tensor_resized = transform(img_tensor) #3,h,w
211
+ videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
212
+ print("get latent z")
213
+ # z = get_latent_z(model, videos) #bc,1,hw
214
+ videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
215
+
216
+ if sketch is not None:
217
+ img_tensor2 = torch.from_numpy(sketch).permute(2, 0, 1).float().to(model.device)
218
+ img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
219
+ img_tensor2 = transpose_if_needed(img_tensor2)
220
+ image_tensor_resized2 = transform(img_tensor2) #3,h,w
221
+ videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw
222
+ videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
223
+
224
+ videos = torch.cat([videos, videos2], dim=2)
225
+ else:
226
+ videos = torch.cat([videos, videos], dim=2)
227
+
228
+ z, hs = get_latent_z_with_hidden_states(model, videos)
229
+
230
+ img_tensor_repeat = torch.zeros_like(z)
231
+
232
+ img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
233
+ img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]
234
+
235
+ print("image embedder")
236
+ cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
237
+ img_emb = model.image_proj_model(cond_images)
238
+
239
+ imtext_cond = torch.cat([text_emb, img_emb], dim=1)
240
+
241
+ fs = torch.tensor([fs], dtype=torch.long, device=model.device)
242
+ # print("cn videos:",cn_videos.shape, "img emb:", img_emb.shape)
243
+ cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos}
244
+
245
+ print("before sample loop")
246
+ ## inference
247
+ batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)
248
+
249
+ ## remove the last frame
250
+ # if image2 is None:
251
+ batch_samples = batch_samples[:,:,:,:-1,...]
252
+ ## b,samples,c,t,h,w
253
+ prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
254
+ prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
255
+ prompt_str=prompt_str[:40]
256
+ if len(prompt_str) == 0:
257
+ prompt_str = 'empty_prompt'
258
+
259
+ global result_dir
260
+ global save_fps
261
+ if input_h > input_w:
262
+ batch_samples = untranspose(batch_samples)
263
+
264
+ save_videos(batch_samples, result_dir, filenames=[prompt_str], fps=save_fps)
265
+ print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
266
+ model = model.cpu()
267
+ saved_result_dir = os.path.join(result_dir, f"{prompt_str}.mp4")
268
+ print("result saved to:", saved_result_dir)
269
+ return saved_result_dir
270
+
271
+
272
+ # @spaces.GPU
273
+
274
+
275
+
276
+ # i2v_examples_interp_1024 = [
277
+ # ['prompts/1024_interp/frame_000000.jpg', 'prompts/1024_interp/frame_000041.jpg', 'a cat is eating', 50, 7.5, 1.0, 10, 123]
278
+ # ]
279
+
280
+ i2v_examples_interp_1024 = [
281
+ ['prompts/1024_interp/hall_first.jpg', 'prompts/1024_interp/hall_sketch.jpg',
282
+ 'At the start, a still image of a wooden hallway with arched arches, doors, and various furniture. The scene then transitions to an animated version of the hallway, showcasing more details like a bookshelf and a window.',
283
+ 50, 7.5, 1.0, 10, 123]
284
+ ]
285
+
286
+
287
+
288
+
289
+ def dynamicrafter_demo(result_dir='./tmp/', res=1024):
290
+ if res == 1024:
291
+ resolution = '576_1024'
292
+ css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px}"""
293
+ elif res == 512:
294
+ resolution = '320_512'
295
+ css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px} #input_img2 {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""
296
+ elif res == 256:
297
+ resolution = '256_256'
298
+ css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
299
+ else:
300
+ raise NotImplementedError(f"Unsupported resolution: {res}")
301
+ # image2video = Image2Video(result_dir, resolution=resolution)
302
+ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
303
+
304
+
305
+
306
+ with gr.Tab(label='ToonCrafter_576x1024'):
307
+ with gr.Column():
308
+ with gr.Row():
309
+ with gr.Column():
310
+ with gr.Row():
311
+ i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img")
312
+ # frame_guides = gr.Video(label="Input Guidance",elem_id="input_guidance", autoplay=True,show_share_button=True)
313
+ with gr.Row():
314
+ i2v_input_text = gr.Text(label='Prompts')
315
+ with gr.Row():
316
+ i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
317
+ i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
318
+ i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
319
+ with gr.Row():
320
+ i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
321
+ i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10)
322
+ control_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, elem_id="i2v_ctrl_scale", label="control_scale", value=0.6)
323
+ i2v_end_btn = gr.Button("Generate")
324
+ with gr.Column():
325
+ with gr.Row():
326
+ i2v_input_sketch = gr.Image(label="Input Image2",elem_id="input_img2")
327
+ with gr.Row():
328
+ i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
329
+
330
+ gr.Examples(examples=i2v_examples_interp_1024,
331
+ inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
332
+ outputs=[i2v_output_video],
333
+ fn = get_image,
334
+ cache_examples=False,
335
+ )
336
+ i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
337
+ outputs=[i2v_output_video],
338
+ fn = get_image
339
+ )
340
+
341
+
342
+ return dynamicrafter_iface
343
+
344
+
345
+ def get_parser():
346
+ parser = argparse.ArgumentParser()
347
+ return parser
348
+
349
+
350
+ if __name__ == "__main__":
351
+ parser = get_parser()
352
+ args = parser.parse_args()
353
+
354
+ result_dir = os.path.join('./', 'results')
355
+ dynamicrafter_iface = dynamicrafter_demo(result_dir)
356
+ dynamicrafter_iface.queue(max_size=12)
357
+ print("launching...")
358
+ # dynamicrafter_iface.launch(max_threads=1, share=True)
359
+
360
+ dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345)
361
+ # dynamicrafter_iface.launch()
362
+ # print("launched...")
configs/.DS_Store ADDED
Binary file (6.15 kB). View file
 
configs/inference_1024_v1.0.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: lvdm.models.ddpm3d.LatentVisualDiffusion
3
+ params:
4
+ rescale_betas_zero_snr: True
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.012
8
+ num_timesteps_cond: 1
9
+ timesteps: 1000
10
+ first_stage_key: video
11
+ cond_stage_key: caption
12
+ cond_stage_trainable: False
13
+ conditioning_key: hybrid
14
+ image_size: [72, 128]
15
+ channels: 4
16
+ scale_by_std: False
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+ uncond_type: 'empty_seq'
20
+ use_dynamic_rescale: true
21
+ base_scale: 0.7
22
+ fps_condition_type: 'fps'
23
+ perframe_ae: True
24
+ loop_video: true
25
+ unet_config:
26
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
27
+ params:
28
+ in_channels: 8
29
+ out_channels: 4
30
+ model_channels: 320
31
+ attention_resolutions:
32
+ - 4
33
+ - 2
34
+ - 1
35
+ num_res_blocks: 2
36
+ channel_mult:
37
+ - 1
38
+ - 2
39
+ - 4
40
+ - 4
41
+ dropout: 0.1
42
+ num_head_channels: 64
43
+ transformer_depth: 1
44
+ context_dim: 1024
45
+ use_linear: true
46
+ use_checkpoint: True
47
+ temporal_conv: True
48
+ temporal_attention: True
49
+ temporal_selfatt_only: true
50
+ use_relative_position: false
51
+ use_causal_attention: False
52
+ temporal_length: 16
53
+ addition_attention: true
54
+ image_cross_attention: true
55
+ default_fs: 24
56
+ fs_condition: true
57
+
58
+ first_stage_config:
59
+ target: lvdm.models.autoencoder.AutoencoderKL_Dualref
60
+ params:
61
+ embed_dim: 4
62
+ monitor: val/rec_loss
63
+ ddconfig:
64
+ double_z: True
65
+ z_channels: 4
66
+ resolution: 256
67
+ in_channels: 3
68
+ out_ch: 3
69
+ ch: 128
70
+ ch_mult:
71
+ - 1
72
+ - 2
73
+ - 4
74
+ - 4
75
+ num_res_blocks: 2
76
+ attn_resolutions: []
77
+ dropout: 0.0
78
+ lossconfig:
79
+ target: torch.nn.Identity
80
+
81
+ cond_stage_config:
82
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
83
+ params:
84
+ freeze: true
85
+ layer: "penultimate"
86
+
87
+ img_cond_stage_config:
88
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
89
+ params:
90
+ freeze: true
91
+
92
+ image_proj_stage_config:
93
+ target: lvdm.modules.encoders.resampler.Resampler
94
+ params:
95
+ dim: 1024
96
+ depth: 4
97
+ dim_head: 64
98
+ heads: 12
99
+ num_queries: 16
100
+ embedding_dim: 1280
101
+ output_dim: 1024
102
+ ff_mult: 4
103
+ video_length: 16
configs/inference_512_v1.0.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: lvdm.models.ddpm3d.LatentVisualDiffusion
3
+ params:
4
+ rescale_betas_zero_snr: True
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.012
8
+ num_timesteps_cond: 1
9
+ timesteps: 1000
10
+ first_stage_key: video
11
+ cond_stage_key: caption
12
+ cond_stage_trainable: False
13
+ conditioning_key: hybrid
14
+ image_size: [40, 64]
15
+ channels: 4
16
+ scale_by_std: False
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+ uncond_type: 'empty_seq'
20
+ use_dynamic_rescale: true
21
+ base_scale: 0.7
22
+ fps_condition_type: 'fps'
23
+ perframe_ae: True
24
+ loop_video: true
25
+ unet_config:
26
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
27
+ params:
28
+ in_channels: 8
29
+ out_channels: 4
30
+ model_channels: 320
31
+ attention_resolutions:
32
+ - 4
33
+ - 2
34
+ - 1
35
+ num_res_blocks: 2
36
+ channel_mult:
37
+ - 1
38
+ - 2
39
+ - 4
40
+ - 4
41
+ dropout: 0.1
42
+ num_head_channels: 64
43
+ transformer_depth: 1
44
+ context_dim: 1024
45
+ use_linear: true
46
+ use_checkpoint: True
47
+ temporal_conv: True
48
+ temporal_attention: True
49
+ temporal_selfatt_only: true
50
+ use_relative_position: false
51
+ use_causal_attention: False
52
+ temporal_length: 16
53
+ addition_attention: true
54
+ image_cross_attention: true
55
+ default_fs: 24
56
+ fs_condition: true
57
+
58
+ first_stage_config:
59
+ target: lvdm.models.autoencoder.AutoencoderKL_Dualref
60
+ params:
61
+ embed_dim: 4
62
+ monitor: val/rec_loss
63
+ ddconfig:
64
+ double_z: True
65
+ z_channels: 4
66
+ resolution: 256
67
+ in_channels: 3
68
+ out_ch: 3
69
+ ch: 128
70
+ ch_mult:
71
+ - 1
72
+ - 2
73
+ - 4
74
+ - 4
75
+ num_res_blocks: 2
76
+ attn_resolutions: []
77
+ dropout: 0.0
78
+ lossconfig:
79
+ target: torch.nn.Identity
80
+
81
+ cond_stage_config:
82
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
83
+ params:
84
+ freeze: true
85
+ layer: "penultimate"
86
+
87
+ img_cond_stage_config:
88
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
89
+ params:
90
+ freeze: true
91
+
92
+ image_proj_stage_config:
93
+ target: lvdm.modules.encoders.resampler.Resampler
94
+ params:
95
+ dim: 1024
96
+ depth: 4
97
+ dim_head: 64
98
+ heads: 12
99
+ num_queries: 16
100
+ embedding_dim: 1280
101
+ output_dim: 1024
102
+ ff_mult: 4
103
+ video_length: 16
configs/training_1024_v1.0/config.yaml ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ pretrained_checkpoint: checkpoints/dynamicrafter_1024_v1/model.ckpt
3
+ base_learning_rate: 1.0e-05
4
+ scale_lr: False
5
+ target: lvdm.models.ddpm3d.LatentVisualDiffusion
6
+ params:
7
+ rescale_betas_zero_snr: True
8
+ parameterization: "v"
9
+ linear_start: 0.00085
10
+ linear_end: 0.012
11
+ num_timesteps_cond: 1
12
+ log_every_t: 200
13
+ timesteps: 1000
14
+ first_stage_key: video
15
+ cond_stage_key: caption
16
+ cond_stage_trainable: False
17
+ image_proj_model_trainable: True
18
+ conditioning_key: hybrid
19
+ image_size: [72, 128]
20
+ channels: 4
21
+ scale_by_std: False
22
+ scale_factor: 0.18215
23
+ use_ema: False
24
+ uncond_prob: 0.05
25
+ uncond_type: 'empty_seq'
26
+ rand_cond_frame: true
27
+ use_dynamic_rescale: true
28
+ base_scale: 0.3
29
+ fps_condition_type: 'fps'
30
+ perframe_ae: True
31
+
32
+ unet_config:
33
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
34
+ params:
35
+ in_channels: 8
36
+ out_channels: 4
37
+ model_channels: 320
38
+ attention_resolutions:
39
+ - 4
40
+ - 2
41
+ - 1
42
+ num_res_blocks: 2
43
+ channel_mult:
44
+ - 1
45
+ - 2
46
+ - 4
47
+ - 4
48
+ dropout: 0.1
49
+ num_head_channels: 64
50
+ transformer_depth: 1
51
+ context_dim: 1024
52
+ use_linear: true
53
+ use_checkpoint: True
54
+ temporal_conv: True
55
+ temporal_attention: True
56
+ temporal_selfatt_only: true
57
+ use_relative_position: false
58
+ use_causal_attention: False
59
+ temporal_length: 16
60
+ addition_attention: true
61
+ image_cross_attention: true
62
+ default_fs: 10
63
+ fs_condition: true
64
+
65
+ first_stage_config:
66
+ target: lvdm.models.autoencoder.AutoencoderKL
67
+ params:
68
+ embed_dim: 4
69
+ monitor: val/rec_loss
70
+ ddconfig:
71
+ double_z: True
72
+ z_channels: 4
73
+ resolution: 256
74
+ in_channels: 3
75
+ out_ch: 3
76
+ ch: 128
77
+ ch_mult:
78
+ - 1
79
+ - 2
80
+ - 4
81
+ - 4
82
+ num_res_blocks: 2
83
+ attn_resolutions: []
84
+ dropout: 0.0
85
+ lossconfig:
86
+ target: torch.nn.Identity
87
+
88
+ cond_stage_config:
89
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
90
+ params:
91
+ freeze: true
92
+ layer: "penultimate"
93
+
94
+ img_cond_stage_config:
95
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
96
+ params:
97
+ freeze: true
98
+
99
+ image_proj_stage_config:
100
+ target: lvdm.modules.encoders.resampler.Resampler
101
+ params:
102
+ dim: 1024
103
+ depth: 4
104
+ dim_head: 64
105
+ heads: 12
106
+ num_queries: 16
107
+ embedding_dim: 1280
108
+ output_dim: 1024
109
+ ff_mult: 4
110
+ video_length: 16
111
+
112
+ data:
113
+ target: utils_data.DataModuleFromConfig
114
+ params:
115
+ batch_size: 1
116
+ num_workers: 12
117
+ wrap: false
118
+ train:
119
+ target: lvdm.data.webvid.WebVid
120
+ params:
121
+ data_dir: <WebVid10M DATA>
122
+ meta_path: <.csv FILE>
123
+ video_length: 16
124
+ frame_stride: 6
125
+ load_raw_resolution: true
126
+ resolution: [576, 1024]
127
+ spatial_transform: resize_center_crop
128
+ random_fs: true ## if true, we uniformly sample fs with max_fs=frame_stride (above)
129
+
130
+ lightning:
131
+ precision: 16
132
+ # strategy: deepspeed_stage_2
133
+ trainer:
134
+ benchmark: True
135
+ accumulate_grad_batches: 2
136
+ max_steps: 100000
137
+ # logger
138
+ log_every_n_steps: 50
139
+ # val
140
+ val_check_interval: 0.5
141
+ gradient_clip_algorithm: 'norm'
142
+ gradient_clip_val: 0.5
143
+ callbacks:
144
+ model_checkpoint:
145
+ target: pytorch_lightning.callbacks.ModelCheckpoint
146
+ params:
147
+ every_n_train_steps: 9000 #1000
148
+ filename: "{epoch}-{step}"
149
+ save_weights_only: True
150
+ metrics_over_trainsteps_checkpoint:
151
+ target: pytorch_lightning.callbacks.ModelCheckpoint
152
+ params:
153
+ filename: '{epoch}-{step}'
154
+ save_weights_only: True
155
+ every_n_train_steps: 10000 #20000 # 3s/step*2w=
156
+ batch_logger:
157
+ target: callbacks.ImageLogger
158
+ params:
159
+ batch_frequency: 500
160
+ to_local: False
161
+ max_images: 8
162
+ log_images_kwargs:
163
+ ddim_steps: 50
164
+ unconditional_guidance_scale: 7.5
165
+ timestep_spacing: uniform_trailing
166
+ guidance_rescale: 0.7
configs/training_1024_v1.0/run.sh ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NCCL configuration
2
+ # export NCCL_DEBUG=INFO
3
+ # export NCCL_IB_DISABLE=0
4
+ # export NCCL_IB_GID_INDEX=3
5
+ # export NCCL_NET_GDR_LEVEL=3
6
+ # export NCCL_TOPO_FILE=/tmp/topo.txt
7
+
8
+ # args
9
+ name="training_1024_v1.0"
10
+ config_file=configs/${name}/config.yaml
11
+
12
+ # save root dir for logs, checkpoints, tensorboard record, etc.
13
+ save_root="<YOUR_SAVE_ROOT_DIR>"
14
+
15
+ mkdir -p $save_root/$name
16
+
17
+ ## run
18
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch \
19
+ --nproc_per_node=$HOST_GPU_NUM --nnodes=1 --master_addr=127.0.0.1 --master_port=12352 --node_rank=0 \
20
+ ./main/trainer.py \
21
+ --base $config_file \
22
+ --train \
23
+ --name $name \
24
+ --logdir $save_root \
25
+ --devices $HOST_GPU_NUM \
26
+ lightning.trainer.num_nodes=1
27
+
28
+ ## debugging
29
+ # CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m torch.distributed.launch \
30
+ # --nproc_per_node=4 --nnodes=1 --master_addr=127.0.0.1 --master_port=12352 --node_rank=0 \
31
+ # ./main/trainer.py \
32
+ # --base $config_file \
33
+ # --train \
34
+ # --name $name \
35
+ # --logdir $save_root \
36
+ # --devices 4 \
37
+ # lightning.trainer.num_nodes=1
configs/training_512_v1.0/config.yaml ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ pretrained_checkpoint: checkpoints/dynamicrafter_512_v1/model.ckpt
3
+ base_learning_rate: 1.0e-05
4
+ scale_lr: False
5
+ target: lvdm.models.ddpm3d.LatentVisualDiffusion
6
+ params:
7
+ rescale_betas_zero_snr: True
8
+ parameterization: "v"
9
+ linear_start: 0.00085
10
+ linear_end: 0.012
11
+ num_timesteps_cond: 1
12
+ log_every_t: 200
13
+ timesteps: 1000
14
+ first_stage_key: video
15
+ cond_stage_key: caption
16
+ cond_stage_trainable: False
17
+ image_proj_model_trainable: True
18
+ conditioning_key: hybrid
19
+ image_size: [40, 64]
20
+ channels: 4
21
+ scale_by_std: False
22
+ scale_factor: 0.18215
23
+ use_ema: False
24
+ uncond_prob: 0.05
25
+ uncond_type: 'empty_seq'
26
+ rand_cond_frame: true
27
+ use_dynamic_rescale: true
28
+ base_scale: 0.7
29
+ fps_condition_type: 'fps'
30
+ perframe_ae: True
31
+
32
+ unet_config:
33
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
34
+ params:
35
+ in_channels: 8
36
+ out_channels: 4
37
+ model_channels: 320
38
+ attention_resolutions:
39
+ - 4
40
+ - 2
41
+ - 1
42
+ num_res_blocks: 2
43
+ channel_mult:
44
+ - 1
45
+ - 2
46
+ - 4
47
+ - 4
48
+ dropout: 0.1
49
+ num_head_channels: 64
50
+ transformer_depth: 1
51
+ context_dim: 1024
52
+ use_linear: true
53
+ use_checkpoint: True
54
+ temporal_conv: True
55
+ temporal_attention: True
56
+ temporal_selfatt_only: true
57
+ use_relative_position: false
58
+ use_causal_attention: False
59
+ temporal_length: 16
60
+ addition_attention: true
61
+ image_cross_attention: true
62
+ default_fs: 10
63
+ fs_condition: true
64
+
65
+ first_stage_config:
66
+ target: lvdm.models.autoencoder.AutoencoderKL
67
+ params:
68
+ embed_dim: 4
69
+ monitor: val/rec_loss
70
+ ddconfig:
71
+ double_z: True
72
+ z_channels: 4
73
+ resolution: 256
74
+ in_channels: 3
75
+ out_ch: 3
76
+ ch: 128
77
+ ch_mult:
78
+ - 1
79
+ - 2
80
+ - 4
81
+ - 4
82
+ num_res_blocks: 2
83
+ attn_resolutions: []
84
+ dropout: 0.0
85
+ lossconfig:
86
+ target: torch.nn.Identity
87
+
88
+ cond_stage_config:
89
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
90
+ params:
91
+ freeze: true
92
+ layer: "penultimate"
93
+
94
+ img_cond_stage_config:
95
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
96
+ params:
97
+ freeze: true
98
+
99
+ image_proj_stage_config:
100
+ target: lvdm.modules.encoders.resampler.Resampler
101
+ params:
102
+ dim: 1024
103
+ depth: 4
104
+ dim_head: 64
105
+ heads: 12
106
+ num_queries: 16
107
+ embedding_dim: 1280
108
+ output_dim: 1024
109
+ ff_mult: 4
110
+ video_length: 16
111
+
112
+ data:
113
+ target: utils_data.DataModuleFromConfig
114
+ params:
115
+ batch_size: 2
116
+ num_workers: 12
117
+ wrap: false
118
+ train:
119
+ target: lvdm.data.webvid.WebVid
120
+ params:
121
+ data_dir: <WebVid10M DATA>
122
+ meta_path: <.csv FILE>
123
+ video_length: 16
124
+ frame_stride: 6
125
+ load_raw_resolution: true
126
+ resolution: [320, 512]
127
+ spatial_transform: resize_center_crop
128
+ random_fs: true ## if true, we uniformly sample fs with max_fs=frame_stride (above)
129
+
130
+ lightning:
131
+ precision: 16
132
+ # strategy: deepspeed_stage_2
133
+ trainer:
134
+ benchmark: True
135
+ accumulate_grad_batches: 2
136
+ max_steps: 100000
137
+ # logger
138
+ log_every_n_steps: 50
139
+ # val
140
+ val_check_interval: 0.5
141
+ gradient_clip_algorithm: 'norm'
142
+ gradient_clip_val: 0.5
143
+ callbacks:
144
+ model_checkpoint:
145
+ target: pytorch_lightning.callbacks.ModelCheckpoint
146
+ params:
147
+ every_n_train_steps: 9000 #1000
148
+ filename: "{epoch}-{step}"
149
+ save_weights_only: True
150
+ metrics_over_trainsteps_checkpoint:
151
+ target: pytorch_lightning.callbacks.ModelCheckpoint
152
+ params:
153
+ filename: '{epoch}-{step}'
154
+ save_weights_only: True
155
+ every_n_train_steps: 10000 #20000 # 3s/step*2w=
156
+ batch_logger:
157
+ target: callbacks.ImageLogger
158
+ params:
159
+ batch_frequency: 500
160
+ to_local: False
161
+ max_images: 8
162
+ log_images_kwargs:
163
+ ddim_steps: 50
164
+ unconditional_guidance_scale: 7.5
165
+ timestep_spacing: uniform_trailing
166
+ guidance_rescale: 0.7
configs/training_512_v1.0/run.sh ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NCCL configuration
2
+ # export NCCL_DEBUG=INFO
3
+ # export NCCL_IB_DISABLE=0
4
+ # export NCCL_IB_GID_INDEX=3
5
+ # export NCCL_NET_GDR_LEVEL=3
6
+ # export NCCL_TOPO_FILE=/tmp/topo.txt
7
+
8
+ # args
9
+ name="training_512_v1.0"
10
+ config_file=configs/${name}/config.yaml
11
+
12
+ # save root dir for logs, checkpoints, tensorboard record, etc.
13
+ save_root="<YOUR_SAVE_ROOT_DIR>"
14
+
15
+ mkdir -p $save_root/$name
16
+
17
+ ## run
18
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch \
19
+ --nproc_per_node=$HOST_GPU_NUM --nnodes=1 --master_addr=127.0.0.1 --master_port=12352 --node_rank=0 \
20
+ ./main/trainer.py \
21
+ --base $config_file \
22
+ --train \
23
+ --name $name \
24
+ --logdir $save_root \
25
+ --devices $HOST_GPU_NUM \
26
+ lightning.trainer.num_nodes=1
27
+
28
+ ## debugging
29
+ # CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m torch.distributed.launch \
30
+ # --nproc_per_node=4 --nnodes=1 --master_addr=127.0.0.1 --master_port=12352 --node_rank=0 \
31
+ # ./main/trainer.py \
32
+ # --base $config_file \
33
+ # --train \
34
+ # --name $name \
35
+ # --logdir $save_root \
36
+ # --devices 4 \
37
+ # lightning.trainer.num_nodes=1
lvdm/.DS_Store ADDED
Binary file (6.15 kB). View file
 
lvdm/basics.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+ import torch.nn as nn
11
+ from utils.utils import instantiate_from_config
12
+
13
+
14
+ def disabled_train(self, mode=True):
15
+ """Overwrite model.train with this function to make sure train/eval mode
16
+ does not change anymore."""
17
+ return self
18
+
19
+ def zero_module(module):
20
+ """
21
+ Zero out the parameters of a module and return it.
22
+ """
23
+ for p in module.parameters():
24
+ p.detach().zero_()
25
+ return module
26
+
27
+ def scale_module(module, scale):
28
+ """
29
+ Scale the parameters of a module and return it.
30
+ """
31
+ for p in module.parameters():
32
+ p.detach().mul_(scale)
33
+ return module
34
+
35
+
36
+ def conv_nd(dims, *args, **kwargs):
37
+ """
38
+ Create a 1D, 2D, or 3D convolution module.
39
+ """
40
+ if dims == 1:
41
+ return nn.Conv1d(*args, **kwargs)
42
+ elif dims == 2:
43
+ return nn.Conv2d(*args, **kwargs)
44
+ elif dims == 3:
45
+ return nn.Conv3d(*args, **kwargs)
46
+ raise ValueError(f"unsupported dimensions: {dims}")
47
+
48
+
49
+ def linear(*args, **kwargs):
50
+ """
51
+ Create a linear module.
52
+ """
53
+ return nn.Linear(*args, **kwargs)
54
+
55
+
56
+ def avg_pool_nd(dims, *args, **kwargs):
57
+ """
58
+ Create a 1D, 2D, or 3D average pooling module.
59
+ """
60
+ if dims == 1:
61
+ return nn.AvgPool1d(*args, **kwargs)
62
+ elif dims == 2:
63
+ return nn.AvgPool2d(*args, **kwargs)
64
+ elif dims == 3:
65
+ return nn.AvgPool3d(*args, **kwargs)
66
+ raise ValueError(f"unsupported dimensions: {dims}")
67
+
68
+
69
+ def nonlinearity(type='silu'):
70
+ if type == 'silu':
71
+ return nn.SiLU()
72
+ elif type == 'leaky_relu':
73
+ return nn.LeakyReLU()
74
+
75
+
76
+ class GroupNormSpecific(nn.GroupNorm):
77
+ def forward(self, x):
78
+ return super().forward(x.float()).type(x.dtype)
79
+
80
+
81
+ def normalization(channels, num_groups=32):
82
+ """
83
+ Make a standard normalization layer.
84
+ :param channels: number of input channels.
85
+ :return: an nn.Module for normalization.
86
+ """
87
+ return GroupNormSpecific(num_groups, channels)
88
+
89
+
90
+ class HybridConditioner(nn.Module):
91
+
92
+ def __init__(self, c_concat_config, c_crossattn_config):
93
+ super().__init__()
94
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
95
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
96
+
97
+ def forward(self, c_concat, c_crossattn):
98
+ c_concat = self.concat_conditioner(c_concat)
99
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
100
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
lvdm/common.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from inspect import isfunction
3
+ import torch
4
+ from torch import nn
5
+ import torch.distributed as dist
6
+
7
+
8
+ def gather_data(data, return_np=True):
9
+ ''' gather data from multiple processes to one list '''
10
+ data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
11
+ dist.all_gather(data_list, data) # gather not supported with NCCL
12
+ if return_np:
13
+ data_list = [data.cpu().numpy() for data in data_list]
14
+ return data_list
15
+
16
+ def autocast(f):
17
+ def do_autocast(*args, **kwargs):
18
+ with torch.cuda.amp.autocast(enabled=True,
19
+ dtype=torch.get_autocast_gpu_dtype(),
20
+ cache_enabled=torch.is_autocast_cache_enabled()):
21
+ return f(*args, **kwargs)
22
+ return do_autocast
23
+
24
+
25
+ def extract_into_tensor(a, t, x_shape):
26
+ b, *_ = t.shape
27
+ out = a.gather(-1, t)
28
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
29
+
30
+
31
+ def noise_like(shape, device, repeat=False):
32
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
33
+ noise = lambda: torch.randn(shape, device=device)
34
+ return repeat_noise() if repeat else noise()
35
+
36
+
37
+ def default(val, d):
38
+ if exists(val):
39
+ return val
40
+ return d() if isfunction(d) else d
41
+
42
+ def exists(val):
43
+ return val is not None
44
+
45
+ def identity(*args, **kwargs):
46
+ return nn.Identity()
47
+
48
+ def uniq(arr):
49
+ return{el: True for el in arr}.keys()
50
+
51
+ def mean_flat(tensor):
52
+ """
53
+ Take the mean over all non-batch dimensions.
54
+ """
55
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
56
+
57
+ def ismap(x):
58
+ if not isinstance(x, torch.Tensor):
59
+ return False
60
+ return (len(x.shape) == 4) and (x.shape[1] > 3)
61
+
62
+ def isimage(x):
63
+ if not isinstance(x,torch.Tensor):
64
+ return False
65
+ return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
66
+
67
+ def max_neg_value(t):
68
+ return -torch.finfo(t.dtype).max
69
+
70
+ def shape_to_str(x):
71
+ shape_str = "x".join([str(x) for x in x.shape])
72
+ return shape_str
73
+
74
+ def init_(tensor):
75
+ dim = tensor.shape[-1]
76
+ std = 1 / math.sqrt(dim)
77
+ tensor.uniform_(-std, std)
78
+ return tensor
79
+
80
+ ckpt = torch.utils.checkpoint.checkpoint
81
+ def checkpoint(func, inputs, params, flag):
82
+ """
83
+ Evaluate a function without caching intermediate activations, allowing for
84
+ reduced memory at the expense of extra compute in the backward pass.
85
+ :param func: the function to evaluate.
86
+ :param inputs: the argument sequence to pass to `func`.
87
+ :param params: a sequence of parameters `func` depends on but does not
88
+ explicitly take as arguments.
89
+ :param flag: if False, disable gradient checkpointing.
90
+ """
91
+ if flag:
92
+ return ckpt(func, *inputs, use_reentrant=False)
93
+ else:
94
+ return func(*inputs)
lvdm/data/base.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from torch.utils.data import IterableDataset
3
+
4
+
5
+ class Txt2ImgIterableBaseDataset(IterableDataset):
6
+ '''
7
+ Define an interface to make the IterableDatasets for text2img data chainable
8
+ '''
9
+ def __init__(self, num_records=0, valid_ids=None, size=256):
10
+ super().__init__()
11
+ self.num_records = num_records
12
+ self.valid_ids = valid_ids
13
+ self.sample_ids = valid_ids
14
+ self.size = size
15
+
16
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
17
+
18
+ def __len__(self):
19
+ return self.num_records
20
+
21
+ @abstractmethod
22
+ def __iter__(self):
23
+ pass
lvdm/data/webvid.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ from tqdm import tqdm
4
+ import pandas as pd
5
+ from decord import VideoReader, cpu
6
+
7
+ import torch
8
+ from torch.utils.data import Dataset
9
+ from torch.utils.data import DataLoader
10
+ from torchvision import transforms
11
+
12
+
13
+ class WebVid(Dataset):
14
+ """
15
+ WebVid Dataset.
16
+ Assumes webvid data is structured as follows.
17
+ Webvid/
18
+ videos/
19
+ 000001_000050/ ($page_dir)
20
+ 1.mp4 (videoid.mp4)
21
+ ...
22
+ 5000.mp4
23
+ ...
24
+ """
25
+ def __init__(self,
26
+ meta_path,
27
+ data_dir,
28
+ subsample=None,
29
+ video_length=16,
30
+ resolution=[256, 512],
31
+ frame_stride=1,
32
+ frame_stride_min=1,
33
+ spatial_transform=None,
34
+ crop_resolution=None,
35
+ fps_max=None,
36
+ load_raw_resolution=False,
37
+ fixed_fps=None,
38
+ random_fs=False,
39
+ ):
40
+ self.meta_path = meta_path
41
+ self.data_dir = data_dir
42
+ self.subsample = subsample
43
+ self.video_length = video_length
44
+ self.resolution = [resolution, resolution] if isinstance(resolution, int) else resolution
45
+ self.fps_max = fps_max
46
+ self.frame_stride = frame_stride
47
+ self.frame_stride_min = frame_stride_min
48
+ self.fixed_fps = fixed_fps
49
+ self.load_raw_resolution = load_raw_resolution
50
+ self.random_fs = random_fs
51
+ self._load_metadata()
52
+ if spatial_transform is not None:
53
+ if spatial_transform == "random_crop":
54
+ self.spatial_transform = transforms.RandomCrop(crop_resolution)
55
+ elif spatial_transform == "center_crop":
56
+ self.spatial_transform = transforms.Compose([
57
+ transforms.CenterCrop(resolution),
58
+ ])
59
+ elif spatial_transform == "resize_center_crop":
60
+ # assert(self.resolution[0] == self.resolution[1])
61
+ self.spatial_transform = transforms.Compose([
62
+ transforms.Resize(min(self.resolution)),
63
+ transforms.CenterCrop(self.resolution),
64
+ ])
65
+ elif spatial_transform == "resize":
66
+ self.spatial_transform = transforms.Resize(self.resolution)
67
+ else:
68
+ raise NotImplementedError
69
+ else:
70
+ self.spatial_transform = None
71
+
72
+ def _load_metadata(self):
73
+ metadata = pd.read_csv(self.meta_path)
74
+ print(f'>>> {len(metadata)} data samples loaded.')
75
+ if self.subsample is not None:
76
+ metadata = metadata.sample(self.subsample, random_state=0)
77
+
78
+ metadata['caption'] = metadata['name']
79
+ del metadata['name']
80
+ self.metadata = metadata
81
+ self.metadata.dropna(inplace=True)
82
+
83
+ def _get_video_path(self, sample):
84
+ rel_video_fp = os.path.join(sample['page_dir'], str(sample['videoid']) + '.mp4')
85
+ full_video_fp = os.path.join(self.data_dir, 'videos', rel_video_fp)
86
+ return full_video_fp
87
+
88
+ def __getitem__(self, index):
89
+ if self.random_fs:
90
+ frame_stride = random.randint(self.frame_stride_min, self.frame_stride)
91
+ else:
92
+ frame_stride = self.frame_stride
93
+
94
+ ## get frames until success
95
+ while True:
96
+ index = index % len(self.metadata)
97
+ sample = self.metadata.iloc[index]
98
+ video_path = self._get_video_path(sample)
99
+ ## video_path should be in the format of "....../WebVid/videos/$page_dir/$videoid.mp4"
100
+ caption = sample['caption']
101
+
102
+ try:
103
+ if self.load_raw_resolution:
104
+ video_reader = VideoReader(video_path, ctx=cpu(0))
105
+ else:
106
+ video_reader = VideoReader(video_path, ctx=cpu(0), width=530, height=300)
107
+ if len(video_reader) < self.video_length:
108
+ print(f"video length ({len(video_reader)}) is smaller than target length({self.video_length})")
109
+ index += 1
110
+ continue
111
+ else:
112
+ pass
113
+ except:
114
+ index += 1
115
+ print(f"Load video failed! path = {video_path}")
116
+ continue
117
+
118
+ fps_ori = video_reader.get_avg_fps()
119
+ if self.fixed_fps is not None:
120
+ frame_stride = int(frame_stride * (1.0 * fps_ori / self.fixed_fps))
121
+
122
+ ## to avoid extreme cases when fixed_fps is used
123
+ frame_stride = max(frame_stride, 1)
124
+
125
+ ## get valid range (adapting case by case)
126
+ required_frame_num = frame_stride * (self.video_length-1) + 1
127
+ frame_num = len(video_reader)
128
+ if frame_num < required_frame_num:
129
+ ## drop extra samples if fixed fps is required
130
+ if self.fixed_fps is not None and frame_num < required_frame_num * 0.5:
131
+ index += 1
132
+ continue
133
+ else:
134
+ frame_stride = frame_num // self.video_length
135
+ required_frame_num = frame_stride * (self.video_length-1) + 1
136
+
137
+ ## select a random clip
138
+ random_range = frame_num - required_frame_num
139
+ start_idx = random.randint(0, random_range) if random_range > 0 else 0
140
+
141
+ ## calculate frame indices
142
+ frame_indices = [start_idx + frame_stride*i for i in range(self.video_length)]
143
+ try:
144
+ frames = video_reader.get_batch(frame_indices)
145
+ break
146
+ except:
147
+ print(f"Get frames failed! path = {video_path}; [max_ind vs frame_total:{max(frame_indices)} / {frame_num}]")
148
+ index += 1
149
+ continue
150
+
151
+ ## process data
152
+ assert(frames.shape[0] == self.video_length),f'{len(frames)}, self.video_length={self.video_length}'
153
+ frames = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() # [t,h,w,c] -> [c,t,h,w]
154
+
155
+ if self.spatial_transform is not None:
156
+ frames = self.spatial_transform(frames)
157
+
158
+ if self.resolution is not None:
159
+ assert (frames.shape[2], frames.shape[3]) == (self.resolution[0], self.resolution[1]), f'frames={frames.shape}, self.resolution={self.resolution}'
160
+
161
+ ## turn frames tensors to [-1,1]
162
+ frames = (frames / 255 - 0.5) * 2
163
+ fps_clip = fps_ori // frame_stride
164
+ if self.fps_max is not None and fps_clip > self.fps_max:
165
+ fps_clip = self.fps_max
166
+
167
+ data = {'video': frames, 'caption': caption, 'path': video_path, 'fps': fps_clip, 'frame_stride': frame_stride}
168
+ return data
169
+
170
+ def __len__(self):
171
+ return len(self.metadata)
172
+
173
+
174
+ if __name__== "__main__":
175
+ meta_path = "" ## path to the meta file
176
+ data_dir = "" ## path to the data directory
177
+ save_dir = "" ## path to the save directory
178
+ dataset = WebVid(meta_path,
179
+ data_dir,
180
+ subsample=None,
181
+ video_length=16,
182
+ resolution=[256,448],
183
+ frame_stride=4,
184
+ spatial_transform="resize_center_crop",
185
+ crop_resolution=None,
186
+ fps_max=None,
187
+ load_raw_resolution=True
188
+ )
189
+ dataloader = DataLoader(dataset,
190
+ batch_size=1,
191
+ num_workers=0,
192
+ shuffle=False)
193
+
194
+
195
+ import sys
196
+ sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
197
+ from utils.save_video import tensor_to_mp4
198
+ for i, batch in tqdm(enumerate(dataloader), desc="Data Batch"):
199
+ video = batch['video']
200
+ name = batch['path'][0].split('videos/')[-1].replace('/','_')
201
+ tensor_to_mp4(video, save_dir+'/'+name, fps=8)
202
+
lvdm/distributions.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ class AbstractDistribution:
6
+ def sample(self):
7
+ raise NotImplementedError()
8
+
9
+ def mode(self):
10
+ raise NotImplementedError()
11
+
12
+
13
+ class DiracDistribution(AbstractDistribution):
14
+ def __init__(self, value):
15
+ self.value = value
16
+
17
+ def sample(self):
18
+ return self.value
19
+
20
+ def mode(self):
21
+ return self.value
22
+
23
+
24
+ class DiagonalGaussianDistribution(object):
25
+ def __init__(self, parameters, deterministic=False):
26
+ self.parameters = parameters
27
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
+ self.deterministic = deterministic
30
+ self.std = torch.exp(0.5 * self.logvar)
31
+ self.var = torch.exp(self.logvar)
32
+ if self.deterministic:
33
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
+
35
+ def sample(self, noise=None):
36
+ if noise is None:
37
+ noise = torch.randn(self.mean.shape)
38
+
39
+ x = self.mean + self.std * noise.to(device=self.parameters.device)
40
+ return x
41
+
42
+ def kl(self, other=None):
43
+ if self.deterministic:
44
+ return torch.Tensor([0.])
45
+ else:
46
+ if other is None:
47
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
48
+ + self.var - 1.0 - self.logvar,
49
+ dim=[1, 2, 3])
50
+ else:
51
+ return 0.5 * torch.sum(
52
+ torch.pow(self.mean - other.mean, 2) / other.var
53
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
54
+ dim=[1, 2, 3])
55
+
56
+ def nll(self, sample, dims=[1,2,3]):
57
+ if self.deterministic:
58
+ return torch.Tensor([0.])
59
+ logtwopi = np.log(2.0 * np.pi)
60
+ return 0.5 * torch.sum(
61
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
62
+ dim=dims)
63
+
64
+ def mode(self):
65
+ return self.mean
66
+
67
+
68
+ def normal_kl(mean1, logvar1, mean2, logvar2):
69
+ """
70
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
71
+ Compute the KL divergence between two gaussians.
72
+ Shapes are automatically broadcasted, so batches can be compared to
73
+ scalars, among other use cases.
74
+ """
75
+ tensor = None
76
+ for obj in (mean1, logvar1, mean2, logvar2):
77
+ if isinstance(obj, torch.Tensor):
78
+ tensor = obj
79
+ break
80
+ assert tensor is not None, "at least one argument must be a Tensor"
81
+
82
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
83
+ # Tensors, but it does not work for torch.exp().
84
+ logvar1, logvar2 = [
85
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
86
+ for x in (logvar1, logvar2)
87
+ ]
88
+
89
+ return 0.5 * (
90
+ -1.0
91
+ + logvar2
92
+ - logvar1
93
+ + torch.exp(logvar1 - logvar2)
94
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
95
+ )
lvdm/ema.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class LitEma(nn.Module):
6
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
7
+ super().__init__()
8
+ if decay < 0.0 or decay > 1.0:
9
+ raise ValueError('Decay must be between 0 and 1')
10
+
11
+ self.m_name2s_name = {}
12
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
14
+ else torch.tensor(-1,dtype=torch.int))
15
+
16
+ for name, p in model.named_parameters():
17
+ if p.requires_grad:
18
+ #remove as '.'-character is not allowed in buffers
19
+ s_name = name.replace('.','')
20
+ self.m_name2s_name.update({name:s_name})
21
+ self.register_buffer(s_name,p.clone().detach().data)
22
+
23
+ self.collected_params = []
24
+
25
+ def forward(self,model):
26
+ decay = self.decay
27
+
28
+ if self.num_updates >= 0:
29
+ self.num_updates += 1
30
+ decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
31
+
32
+ one_minus_decay = 1.0 - decay
33
+
34
+ with torch.no_grad():
35
+ m_param = dict(model.named_parameters())
36
+ shadow_params = dict(self.named_buffers())
37
+
38
+ for key in m_param:
39
+ if m_param[key].requires_grad:
40
+ sname = self.m_name2s_name[key]
41
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
42
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
43
+ else:
44
+ assert not key in self.m_name2s_name
45
+
46
+ def copy_to(self, model):
47
+ m_param = dict(model.named_parameters())
48
+ shadow_params = dict(self.named_buffers())
49
+ for key in m_param:
50
+ if m_param[key].requires_grad:
51
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
52
+ else:
53
+ assert not key in self.m_name2s_name
54
+
55
+ def store(self, parameters):
56
+ """
57
+ Save the current parameters for restoring later.
58
+ Args:
59
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
60
+ temporarily stored.
61
+ """
62
+ self.collected_params = [param.clone() for param in parameters]
63
+
64
+ def restore(self, parameters):
65
+ """
66
+ Restore the parameters stored with the `store` method.
67
+ Useful to validate the model with EMA parameters without affecting the
68
+ original optimization process. Store the parameters before the
69
+ `copy_to` method. After validation (or model saving), use this to
70
+ restore the former parameters.
71
+ Args:
72
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
73
+ updated with the stored parameters.
74
+ """
75
+ for c_param, param in zip(self.collected_params, parameters):
76
+ param.data.copy_(c_param.data)
lvdm/models/autoencoder.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from contextlib import contextmanager
3
+ import torch
4
+ import numpy as np
5
+ from einops import rearrange
6
+ import torch.nn.functional as F
7
+ import pytorch_lightning as pl
8
+ from lvdm.modules.networks.ae_modules import Encoder, Decoder
9
+ from lvdm.distributions import DiagonalGaussianDistribution
10
+ from utils.utils import instantiate_from_config
11
+
12
+ TIMESTEPS=16
13
+ class AutoencoderKL(pl.LightningModule):
14
+ def __init__(self,
15
+ ddconfig,
16
+ lossconfig,
17
+ embed_dim,
18
+ ckpt_path=None,
19
+ ignore_keys=[],
20
+ image_key="image",
21
+ colorize_nlabels=None,
22
+ monitor=None,
23
+ test=False,
24
+ logdir=None,
25
+ input_dim=4,
26
+ test_args=None,
27
+ additional_decode_keys=None,
28
+ use_checkpoint=False,
29
+ diff_boost_factor=3.0,
30
+ ):
31
+ super().__init__()
32
+ self.image_key = image_key
33
+ self.encoder = Encoder(**ddconfig)
34
+ self.decoder = Decoder(**ddconfig)
35
+ self.loss = instantiate_from_config(lossconfig)
36
+ assert ddconfig["double_z"]
37
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
38
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
39
+ self.embed_dim = embed_dim
40
+ self.input_dim = input_dim
41
+ self.test = test
42
+ self.test_args = test_args
43
+ self.logdir = logdir
44
+ if colorize_nlabels is not None:
45
+ assert type(colorize_nlabels)==int
46
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
+ if monitor is not None:
48
+ self.monitor = monitor
49
+ if ckpt_path is not None:
50
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
51
+ if self.test:
52
+ self.init_test()
53
+
54
+ def init_test(self,):
55
+ self.test = True
56
+ save_dir = os.path.join(self.logdir, "test")
57
+ if 'ckpt' in self.test_args:
58
+ ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
59
+ self.root = os.path.join(save_dir, ckpt_name)
60
+ else:
61
+ self.root = save_dir
62
+ if 'test_subdir' in self.test_args:
63
+ self.root = os.path.join(save_dir, self.test_args.test_subdir)
64
+
65
+ self.root_zs = os.path.join(self.root, "zs")
66
+ self.root_dec = os.path.join(self.root, "reconstructions")
67
+ self.root_inputs = os.path.join(self.root, "inputs")
68
+ os.makedirs(self.root, exist_ok=True)
69
+
70
+ if self.test_args.save_z:
71
+ os.makedirs(self.root_zs, exist_ok=True)
72
+ if self.test_args.save_reconstruction:
73
+ os.makedirs(self.root_dec, exist_ok=True)
74
+ if self.test_args.save_input:
75
+ os.makedirs(self.root_inputs, exist_ok=True)
76
+ assert(self.test_args is not None)
77
+ self.test_maximum = getattr(self.test_args, 'test_maximum', None)
78
+ self.count = 0
79
+ self.eval_metrics = {}
80
+ self.decodes = []
81
+ self.save_decode_samples = 2048
82
+
83
+ def init_from_ckpt(self, path, ignore_keys=list()):
84
+ sd = torch.load(path, map_location="cpu")
85
+ try:
86
+ self._cur_epoch = sd['epoch']
87
+ sd = sd["state_dict"]
88
+ except:
89
+ self._cur_epoch = 'null'
90
+ keys = list(sd.keys())
91
+ for k in keys:
92
+ for ik in ignore_keys:
93
+ if k.startswith(ik):
94
+ print("Deleting key {} from state_dict.".format(k))
95
+ del sd[k]
96
+ self.load_state_dict(sd, strict=False)
97
+ # self.load_state_dict(sd, strict=True)
98
+ print(f"Restored from {path}")
99
+
100
+ def encode(self, x, return_hidden_states=False, **kwargs):
101
+ if return_hidden_states:
102
+ h, hidden = self.encoder(x, return_hidden_states)
103
+ moments = self.quant_conv(h)
104
+ posterior = DiagonalGaussianDistribution(moments)
105
+ return posterior, hidden
106
+ else:
107
+ h = self.encoder(x)
108
+ moments = self.quant_conv(h)
109
+ posterior = DiagonalGaussianDistribution(moments)
110
+ return posterior
111
+
112
+ def decode(self, z, **kwargs):
113
+ if len(kwargs) == 0: ## use the original decoder in AutoencoderKL
114
+ z = self.post_quant_conv(z)
115
+ dec = self.decoder(z, **kwargs) ##change for SVD decoder by adding **kwargs
116
+ return dec
117
+
118
+ def forward(self, input, sample_posterior=True, **additional_decode_kwargs):
119
+ input_tuple = (input, )
120
+ forward_temp = partial(self._forward, sample_posterior=sample_posterior, **additional_decode_kwargs)
121
+ return checkpoint(forward_temp, input_tuple, self.parameters(), self.use_checkpoint)
122
+
123
+
124
+ def _forward(self, input, sample_posterior=True, **additional_decode_kwargs):
125
+ posterior = self.encode(input)
126
+ if sample_posterior:
127
+ z = posterior.sample()
128
+ else:
129
+ z = posterior.mode()
130
+ dec = self.decode(z, **additional_decode_kwargs)
131
+ ## print(input.shape, dec.shape) torch.Size([16, 3, 256, 256]) torch.Size([16, 3, 256, 256])
132
+ return dec, posterior
133
+
134
+ def get_input(self, batch, k):
135
+ x = batch[k]
136
+ if x.dim() == 5 and self.input_dim == 4:
137
+ b,c,t,h,w = x.shape
138
+ self.b = b
139
+ self.t = t
140
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
141
+
142
+ return x
143
+
144
+ def training_step(self, batch, batch_idx, optimizer_idx):
145
+ inputs = self.get_input(batch, self.image_key)
146
+ reconstructions, posterior = self(inputs)
147
+
148
+ if optimizer_idx == 0:
149
+ # train encoder+decoder+logvar
150
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
151
+ last_layer=self.get_last_layer(), split="train")
152
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
153
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
154
+ return aeloss
155
+
156
+ if optimizer_idx == 1:
157
+ # train the discriminator
158
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
159
+ last_layer=self.get_last_layer(), split="train")
160
+
161
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
162
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
163
+ return discloss
164
+
165
+ def validation_step(self, batch, batch_idx):
166
+ inputs = self.get_input(batch, self.image_key)
167
+ reconstructions, posterior = self(inputs)
168
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
169
+ last_layer=self.get_last_layer(), split="val")
170
+
171
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
172
+ last_layer=self.get_last_layer(), split="val")
173
+
174
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
175
+ self.log_dict(log_dict_ae)
176
+ self.log_dict(log_dict_disc)
177
+ return self.log_dict
178
+
179
+ def configure_optimizers(self):
180
+ lr = self.learning_rate
181
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
182
+ list(self.decoder.parameters())+
183
+ list(self.quant_conv.parameters())+
184
+ list(self.post_quant_conv.parameters()),
185
+ lr=lr, betas=(0.5, 0.9))
186
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
187
+ lr=lr, betas=(0.5, 0.9))
188
+ return [opt_ae, opt_disc], []
189
+
190
+ def get_last_layer(self):
191
+ return self.decoder.conv_out.weight
192
+
193
+ @torch.no_grad()
194
+ def log_images(self, batch, only_inputs=False, **kwargs):
195
+ log = dict()
196
+ x = self.get_input(batch, self.image_key)
197
+ x = x.to(self.device)
198
+ if not only_inputs:
199
+ xrec, posterior = self(x)
200
+ if x.shape[1] > 3:
201
+ # colorize with random projection
202
+ assert xrec.shape[1] > 3
203
+ x = self.to_rgb(x)
204
+ xrec = self.to_rgb(xrec)
205
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
206
+ log["reconstructions"] = xrec
207
+ log["inputs"] = x
208
+ return log
209
+
210
+ def to_rgb(self, x):
211
+ assert self.image_key == "segmentation"
212
+ if not hasattr(self, "colorize"):
213
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
214
+ x = F.conv2d(x, weight=self.colorize)
215
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
216
+ return x
217
+
218
+ class IdentityFirstStage(torch.nn.Module):
219
+ def __init__(self, *args, vq_interface=False, **kwargs):
220
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
221
+ super().__init__()
222
+
223
+ def encode(self, x, *args, **kwargs):
224
+ return x
225
+
226
+ def decode(self, x, *args, **kwargs):
227
+ return x
228
+
229
+ def quantize(self, x, *args, **kwargs):
230
+ if self.vq_interface:
231
+ return x, None, [None, None, None]
232
+ return x
233
+
234
+ def forward(self, x, *args, **kwargs):
235
+ return x
236
+
237
+ from lvdm.models.autoencoder_dualref import VideoDecoder
238
+ class AutoencoderKL_Dualref(AutoencoderKL):
239
+ def __init__(self,
240
+ ddconfig,
241
+ lossconfig,
242
+ embed_dim,
243
+ ckpt_path=None,
244
+ ignore_keys=[],
245
+ image_key="image",
246
+ colorize_nlabels=None,
247
+ monitor=None,
248
+ test=False,
249
+ logdir=None,
250
+ input_dim=4,
251
+ test_args=None,
252
+ additional_decode_keys=None,
253
+ use_checkpoint=False,
254
+ diff_boost_factor=3.0,
255
+ ):
256
+ super().__init__(ddconfig, lossconfig, embed_dim, ckpt_path, ignore_keys, image_key, colorize_nlabels, monitor, test, logdir, input_dim, test_args, additional_decode_keys, use_checkpoint, diff_boost_factor)
257
+ self.decoder = VideoDecoder(**ddconfig)
258
+
259
+ def _forward(self, input, sample_posterior=True, **additional_decode_kwargs):
260
+ posterior, hidden_states = self.encode(input, return_hidden_states=True)
261
+
262
+ hidden_states_first_last = []
263
+ ### use only the first and last hidden states
264
+ for hid in hidden_states:
265
+ hid = rearrange(hid, '(b t) c h w -> b c t h w', t=TIMESTEPS)
266
+ hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
267
+ hidden_states_first_last.append(hid_new)
268
+
269
+ if sample_posterior:
270
+ z = posterior.sample()
271
+ else:
272
+ z = posterior.mode()
273
+ dec = self.decode(z, ref_context=hidden_states_first_last, **additional_decode_kwargs)
274
+ ## print(input.shape, dec.shape) torch.Size([16, 3, 256, 256]) torch.Size([16, 3, 256, 256])
275
+ return dec, posterior
lvdm/models/autoencoder_dualref.py ADDED
@@ -0,0 +1,1178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #### https://github.com/Stability-AI/generative-models
2
+ from einops import rearrange, repeat
3
+ import logging
4
+ from typing import Any, Callable, Optional, Iterable, Union
5
+
6
+ import numpy as np
7
+ import torch
8
+ import torch.nn as nn
9
+ from packaging import version
10
+ logpy = logging.getLogger(__name__)
11
+
12
+ try:
13
+ import xformers
14
+ import xformers.ops
15
+
16
+ XFORMERS_IS_AVAILABLE = True
17
+ except:
18
+ XFORMERS_IS_AVAILABLE = False
19
+ logpy.warning("no module 'xformers'. Processing without...")
20
+
21
+ from lvdm.modules.attention_svd import LinearAttention, MemoryEfficientCrossAttention
22
+
23
+
24
+ def nonlinearity(x):
25
+ # swish
26
+ return x * torch.sigmoid(x)
27
+
28
+
29
+ def Normalize(in_channels, num_groups=32):
30
+ return torch.nn.GroupNorm(
31
+ num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
32
+ )
33
+
34
+
35
+ class ResnetBlock(nn.Module):
36
+ def __init__(
37
+ self,
38
+ *,
39
+ in_channels,
40
+ out_channels=None,
41
+ conv_shortcut=False,
42
+ dropout,
43
+ temb_channels=512,
44
+ ):
45
+ super().__init__()
46
+ self.in_channels = in_channels
47
+ out_channels = in_channels if out_channels is None else out_channels
48
+ self.out_channels = out_channels
49
+ self.use_conv_shortcut = conv_shortcut
50
+
51
+ self.norm1 = Normalize(in_channels)
52
+ self.conv1 = torch.nn.Conv2d(
53
+ in_channels, out_channels, kernel_size=3, stride=1, padding=1
54
+ )
55
+ if temb_channels > 0:
56
+ self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
57
+ self.norm2 = Normalize(out_channels)
58
+ self.dropout = torch.nn.Dropout(dropout)
59
+ self.conv2 = torch.nn.Conv2d(
60
+ out_channels, out_channels, kernel_size=3, stride=1, padding=1
61
+ )
62
+ if self.in_channels != self.out_channels:
63
+ if self.use_conv_shortcut:
64
+ self.conv_shortcut = torch.nn.Conv2d(
65
+ in_channels, out_channels, kernel_size=3, stride=1, padding=1
66
+ )
67
+ else:
68
+ self.nin_shortcut = torch.nn.Conv2d(
69
+ in_channels, out_channels, kernel_size=1, stride=1, padding=0
70
+ )
71
+
72
+ def forward(self, x, temb):
73
+ h = x
74
+ h = self.norm1(h)
75
+ h = nonlinearity(h)
76
+ h = self.conv1(h)
77
+
78
+ if temb is not None:
79
+ h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
80
+
81
+ h = self.norm2(h)
82
+ h = nonlinearity(h)
83
+ h = self.dropout(h)
84
+ h = self.conv2(h)
85
+
86
+ if self.in_channels != self.out_channels:
87
+ if self.use_conv_shortcut:
88
+ x = self.conv_shortcut(x)
89
+ else:
90
+ x = self.nin_shortcut(x)
91
+
92
+ return x + h
93
+
94
+
95
+ class LinAttnBlock(LinearAttention):
96
+ """to match AttnBlock usage"""
97
+
98
+ def __init__(self, in_channels):
99
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
100
+
101
+
102
+ class AttnBlock(nn.Module):
103
+ def __init__(self, in_channels):
104
+ super().__init__()
105
+ self.in_channels = in_channels
106
+
107
+ self.norm = Normalize(in_channels)
108
+ self.q = torch.nn.Conv2d(
109
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
110
+ )
111
+ self.k = torch.nn.Conv2d(
112
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
113
+ )
114
+ self.v = torch.nn.Conv2d(
115
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
116
+ )
117
+ self.proj_out = torch.nn.Conv2d(
118
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
119
+ )
120
+
121
+ def attention(self, h_: torch.Tensor) -> torch.Tensor:
122
+ h_ = self.norm(h_)
123
+ q = self.q(h_)
124
+ k = self.k(h_)
125
+ v = self.v(h_)
126
+
127
+ b, c, h, w = q.shape
128
+ q, k, v = map(
129
+ lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v)
130
+ )
131
+ h_ = torch.nn.functional.scaled_dot_product_attention(
132
+ q, k, v
133
+ ) # scale is dim ** -0.5 per default
134
+ # compute attention
135
+
136
+ return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
137
+
138
+ def forward(self, x, **kwargs):
139
+ h_ = x
140
+ h_ = self.attention(h_)
141
+ h_ = self.proj_out(h_)
142
+ return x + h_
143
+
144
+
145
+ class MemoryEfficientAttnBlock(nn.Module):
146
+ """
147
+ Uses xformers efficient implementation,
148
+ see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
149
+ Note: this is a single-head self-attention operation
150
+ """
151
+
152
+ #
153
+ def __init__(self, in_channels):
154
+ super().__init__()
155
+ self.in_channels = in_channels
156
+
157
+ self.norm = Normalize(in_channels)
158
+ self.q = torch.nn.Conv2d(
159
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
160
+ )
161
+ self.k = torch.nn.Conv2d(
162
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
163
+ )
164
+ self.v = torch.nn.Conv2d(
165
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
166
+ )
167
+ self.proj_out = torch.nn.Conv2d(
168
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
169
+ )
170
+ self.attention_op: Optional[Any] = None
171
+
172
+ def attention(self, h_: torch.Tensor) -> torch.Tensor:
173
+ h_ = self.norm(h_)
174
+ q = self.q(h_)
175
+ k = self.k(h_)
176
+ v = self.v(h_)
177
+
178
+ # compute attention
179
+ B, C, H, W = q.shape
180
+ q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
181
+
182
+ q, k, v = map(
183
+ lambda t: t.unsqueeze(3)
184
+ .reshape(B, t.shape[1], 1, C)
185
+ .permute(0, 2, 1, 3)
186
+ .reshape(B * 1, t.shape[1], C)
187
+ .contiguous(),
188
+ (q, k, v),
189
+ )
190
+ out = xformers.ops.memory_efficient_attention(
191
+ q, k, v, attn_bias=None, op=self.attention_op
192
+ )
193
+
194
+ out = (
195
+ out.unsqueeze(0)
196
+ .reshape(B, 1, out.shape[1], C)
197
+ .permute(0, 2, 1, 3)
198
+ .reshape(B, out.shape[1], C)
199
+ )
200
+ return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
201
+
202
+ def forward(self, x, **kwargs):
203
+ h_ = x
204
+ h_ = self.attention(h_)
205
+ h_ = self.proj_out(h_)
206
+ return x + h_
207
+
208
+
209
+ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
210
+ def forward(self, x, context=None, mask=None, **unused_kwargs):
211
+ b, c, h, w = x.shape
212
+ x = rearrange(x, "b c h w -> b (h w) c")
213
+ out = super().forward(x, context=context, mask=mask)
214
+ out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
215
+ return x + out
216
+
217
+
218
+ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
219
+ assert attn_type in [
220
+ "vanilla",
221
+ "vanilla-xformers",
222
+ "memory-efficient-cross-attn",
223
+ "linear",
224
+ "none",
225
+ "memory-efficient-cross-attn-fusion",
226
+ ], f"attn_type {attn_type} unknown"
227
+ if (
228
+ version.parse(torch.__version__) < version.parse("2.0.0")
229
+ and attn_type != "none"
230
+ ):
231
+ assert XFORMERS_IS_AVAILABLE, (
232
+ f"We do not support vanilla attention in {torch.__version__} anymore, "
233
+ f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'"
234
+ )
235
+ # attn_type = "vanilla-xformers"
236
+ logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels")
237
+ if attn_type == "vanilla":
238
+ assert attn_kwargs is None
239
+ return AttnBlock(in_channels)
240
+ elif attn_type == "vanilla-xformers":
241
+ logpy.info(
242
+ f"building MemoryEfficientAttnBlock with {in_channels} in_channels..."
243
+ )
244
+ return MemoryEfficientAttnBlock(in_channels)
245
+ elif attn_type == "memory-efficient-cross-attn":
246
+ attn_kwargs["query_dim"] = in_channels
247
+ return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
248
+ elif attn_type == "memory-efficient-cross-attn-fusion":
249
+ attn_kwargs["query_dim"] = in_channels
250
+ return MemoryEfficientCrossAttentionWrapperFusion(**attn_kwargs)
251
+ elif attn_type == "none":
252
+ return nn.Identity(in_channels)
253
+ else:
254
+ return LinAttnBlock(in_channels)
255
+
256
+ class MemoryEfficientCrossAttentionWrapperFusion(MemoryEfficientCrossAttention):
257
+ # print('x.shape: ',x.shape, 'context.shape: ',context.shape) ##torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
258
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0, **kwargs):
259
+ super().__init__(query_dim, context_dim, heads, dim_head, dropout, **kwargs)
260
+ self.norm = Normalize(query_dim)
261
+ nn.init.zeros_(self.to_out[0].weight)
262
+ nn.init.zeros_(self.to_out[0].bias)
263
+
264
+ def forward(self, x, context=None, mask=None):
265
+ if self.training:
266
+ return checkpoint(self._forward, x, context, mask, use_reentrant=False)
267
+ else:
268
+ return self._forward(x, context, mask)
269
+
270
+ def _forward(
271
+ self,
272
+ x,
273
+ context=None,
274
+ mask=None,
275
+ ):
276
+ bt, c, h, w = x.shape
277
+ h_ = self.norm(x)
278
+ h_ = rearrange(h_, "b c h w -> b (h w) c")
279
+ q = self.to_q(h_)
280
+
281
+
282
+ b, c, l, h, w = context.shape
283
+ context = rearrange(context, "b c l h w -> (b l) (h w) c")
284
+ k = self.to_k(context)
285
+ v = self.to_v(context)
286
+ k = rearrange(k, "(b l) d c -> b l d c", l=l)
287
+ k = torch.cat([k[:, [0] * (bt//b)], k[:, [1]*(bt//b)]], dim=2)
288
+ k = rearrange(k, "b l d c -> (b l) d c")
289
+
290
+ v = rearrange(v, "(b l) d c -> b l d c", l=l)
291
+ v = torch.cat([v[:, [0] * (bt//b)], v[:, [1]*(bt//b)]], dim=2)
292
+ v = rearrange(v, "b l d c -> (b l) d c")
293
+
294
+
295
+ b, _, _ = q.shape ##actually bt
296
+ q, k, v = map(
297
+ lambda t: t.unsqueeze(3)
298
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
299
+ .permute(0, 2, 1, 3)
300
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
301
+ .contiguous(),
302
+ (q, k, v),
303
+ )
304
+
305
+ # actually compute the attention, what we cannot get enough of
306
+ if version.parse(xformers.__version__) >= version.parse("0.0.21"):
307
+ # NOTE: workaround for
308
+ # https://github.com/facebookresearch/xformers/issues/845
309
+ max_bs = 32768
310
+ N = q.shape[0]
311
+ n_batches = math.ceil(N / max_bs)
312
+ out = list()
313
+ for i_batch in range(n_batches):
314
+ batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs)
315
+ out.append(
316
+ xformers.ops.memory_efficient_attention(
317
+ q[batch],
318
+ k[batch],
319
+ v[batch],
320
+ attn_bias=None,
321
+ op=self.attention_op,
322
+ )
323
+ )
324
+ out = torch.cat(out, 0)
325
+ else:
326
+ out = xformers.ops.memory_efficient_attention(
327
+ q, k, v, attn_bias=None, op=self.attention_op
328
+ )
329
+
330
+ # TODO: Use this directly in the attention operation, as a bias
331
+ if exists(mask):
332
+ raise NotImplementedError
333
+ out = (
334
+ out.unsqueeze(0)
335
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
336
+ .permute(0, 2, 1, 3)
337
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
338
+ )
339
+ out = self.to_out(out)
340
+ out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c)
341
+ return x + out
342
+
343
+ class Combiner(nn.Module):
344
+ def __init__(self, ch) -> None:
345
+ super().__init__()
346
+ self.conv = nn.Conv2d(ch,ch,1,padding=0)
347
+
348
+ nn.init.zeros_(self.conv.weight)
349
+ nn.init.zeros_(self.conv.bias)
350
+
351
+ def forward(self, x, context):
352
+ if self.training:
353
+ return checkpoint(self._forward, x, context, use_reentrant=False)
354
+ else:
355
+ return self._forward(x, context)
356
+
357
+ def _forward(self, x, context):
358
+ ## x: b c h w, context: b c 2 h w
359
+ b, c, l, h, w = context.shape
360
+ bt, c, h, w = x.shape
361
+ context = rearrange(context, "b c l h w -> (b l) c h w")
362
+ context = self.conv(context)
363
+ context = rearrange(context, "(b l) c h w -> b c l h w", l=l)
364
+ x = rearrange(x, "(b t) c h w -> b c t h w", t=bt//b)
365
+ x[:,:,0] = x[:,:,0] + context[:,:,0]
366
+ x[:,:,-1] = x[:,:,-1] + context[:,:,1]
367
+ x = rearrange(x, "b c t h w -> (b t) c h w")
368
+ return x
369
+
370
+
371
+ class Decoder(nn.Module):
372
+ def __init__(
373
+ self,
374
+ *,
375
+ ch,
376
+ out_ch,
377
+ ch_mult=(1, 2, 4, 8),
378
+ num_res_blocks,
379
+ attn_resolutions,
380
+ dropout=0.0,
381
+ resamp_with_conv=True,
382
+ in_channels,
383
+ resolution,
384
+ z_channels,
385
+ give_pre_end=False,
386
+ tanh_out=False,
387
+ use_linear_attn=False,
388
+ attn_type="vanilla-xformers",
389
+ attn_level=[2,3],
390
+ **ignorekwargs,
391
+ ):
392
+ super().__init__()
393
+ if use_linear_attn:
394
+ attn_type = "linear"
395
+ self.ch = ch
396
+ self.temb_ch = 0
397
+ self.num_resolutions = len(ch_mult)
398
+ self.num_res_blocks = num_res_blocks
399
+ self.resolution = resolution
400
+ self.in_channels = in_channels
401
+ self.give_pre_end = give_pre_end
402
+ self.tanh_out = tanh_out
403
+ self.attn_level = attn_level
404
+ # compute in_ch_mult, block_in and curr_res at lowest res
405
+ in_ch_mult = (1,) + tuple(ch_mult)
406
+ block_in = ch * ch_mult[self.num_resolutions - 1]
407
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
408
+ self.z_shape = (1, z_channels, curr_res, curr_res)
409
+ logpy.info(
410
+ "Working with z of shape {} = {} dimensions.".format(
411
+ self.z_shape, np.prod(self.z_shape)
412
+ )
413
+ )
414
+
415
+ make_attn_cls = self._make_attn()
416
+ make_resblock_cls = self._make_resblock()
417
+ make_conv_cls = self._make_conv()
418
+ # z to block_in
419
+ self.conv_in = torch.nn.Conv2d(
420
+ z_channels, block_in, kernel_size=3, stride=1, padding=1
421
+ )
422
+
423
+ # middle
424
+ self.mid = nn.Module()
425
+ self.mid.block_1 = make_resblock_cls(
426
+ in_channels=block_in,
427
+ out_channels=block_in,
428
+ temb_channels=self.temb_ch,
429
+ dropout=dropout,
430
+ )
431
+ self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type)
432
+ self.mid.block_2 = make_resblock_cls(
433
+ in_channels=block_in,
434
+ out_channels=block_in,
435
+ temb_channels=self.temb_ch,
436
+ dropout=dropout,
437
+ )
438
+
439
+ # upsampling
440
+ self.up = nn.ModuleList()
441
+ self.attn_refinement = nn.ModuleList()
442
+ for i_level in reversed(range(self.num_resolutions)):
443
+ block = nn.ModuleList()
444
+ attn = nn.ModuleList()
445
+ block_out = ch * ch_mult[i_level]
446
+ for i_block in range(self.num_res_blocks + 1):
447
+ block.append(
448
+ make_resblock_cls(
449
+ in_channels=block_in,
450
+ out_channels=block_out,
451
+ temb_channels=self.temb_ch,
452
+ dropout=dropout,
453
+ )
454
+ )
455
+ block_in = block_out
456
+ if curr_res in attn_resolutions:
457
+ attn.append(make_attn_cls(block_in, attn_type=attn_type))
458
+ up = nn.Module()
459
+ up.block = block
460
+ up.attn = attn
461
+ if i_level != 0:
462
+ up.upsample = Upsample(block_in, resamp_with_conv)
463
+ curr_res = curr_res * 2
464
+ self.up.insert(0, up) # prepend to get consistent order
465
+
466
+ if i_level in self.attn_level:
467
+ self.attn_refinement.insert(0, make_attn_cls(block_in, attn_type='memory-efficient-cross-attn-fusion', attn_kwargs={}))
468
+ else:
469
+ self.attn_refinement.insert(0, Combiner(block_in))
470
+ # end
471
+ self.norm_out = Normalize(block_in)
472
+ self.attn_refinement.append(Combiner(block_in))
473
+ self.conv_out = make_conv_cls(
474
+ block_in, out_ch, kernel_size=3, stride=1, padding=1
475
+ )
476
+
477
+ def _make_attn(self) -> Callable:
478
+ return make_attn
479
+
480
+ def _make_resblock(self) -> Callable:
481
+ return ResnetBlock
482
+
483
+ def _make_conv(self) -> Callable:
484
+ return torch.nn.Conv2d
485
+
486
+ def get_last_layer(self, **kwargs):
487
+ return self.conv_out.weight
488
+
489
+ def forward(self, z, ref_context=None, **kwargs):
490
+ ## ref_context: b c 2 h w, 2 means starting and ending frame
491
+ # assert z.shape[1:] == self.z_shape[1:]
492
+ # print("ref context:", ref_context)
493
+ self.last_z_shape = z.shape
494
+ # timestep embedding
495
+ temb = None
496
+
497
+ # z to block_in
498
+ h = self.conv_in(z)
499
+
500
+ # middle
501
+ h = self.mid.block_1(h, temb, **kwargs)
502
+ h = self.mid.attn_1(h, **kwargs)
503
+ h = self.mid.block_2(h, temb, **kwargs)
504
+
505
+ # upsampling
506
+ for i_level in reversed(range(self.num_resolutions)):
507
+ for i_block in range(self.num_res_blocks + 1):
508
+ h = self.up[i_level].block[i_block](h, temb, **kwargs)
509
+ if len(self.up[i_level].attn) > 0:
510
+ h = self.up[i_level].attn[i_block](h, **kwargs)
511
+ if ref_context:
512
+ h = self.attn_refinement[i_level](x=h, context=ref_context[i_level])
513
+ if i_level != 0:
514
+ h = self.up[i_level].upsample(h)
515
+
516
+ # end
517
+ if self.give_pre_end:
518
+ return h
519
+
520
+ h = self.norm_out(h)
521
+ h = nonlinearity(h)
522
+ if ref_context:
523
+ # print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
524
+ h = self.attn_refinement[-1](x=h, context=ref_context[-1])
525
+ h = self.conv_out(h, **kwargs)
526
+ if self.tanh_out:
527
+ h = torch.tanh(h)
528
+ return h
529
+
530
+ #####
531
+
532
+
533
+ from abc import abstractmethod
534
+ from lvdm.models.utils_diffusion import timestep_embedding
535
+
536
+ from torch.utils.checkpoint import checkpoint
537
+ from lvdm.basics import (
538
+ zero_module,
539
+ conv_nd,
540
+ linear,
541
+ normalization,
542
+ )
543
+ from lvdm.modules.networks.openaimodel3d import Upsample, Downsample
544
+ class TimestepBlock(nn.Module):
545
+ """
546
+ Any module where forward() takes timestep embeddings as a second argument.
547
+ """
548
+
549
+ @abstractmethod
550
+ def forward(self, x: torch.Tensor, emb: torch.Tensor):
551
+ """
552
+ Apply the module to `x` given `emb` timestep embeddings.
553
+ """
554
+
555
+ class ResBlock(TimestepBlock):
556
+ """
557
+ A residual block that can optionally change the number of channels.
558
+ :param channels: the number of input channels.
559
+ :param emb_channels: the number of timestep embedding channels.
560
+ :param dropout: the rate of dropout.
561
+ :param out_channels: if specified, the number of out channels.
562
+ :param use_conv: if True and out_channels is specified, use a spatial
563
+ convolution instead of a smaller 1x1 convolution to change the
564
+ channels in the skip connection.
565
+ :param dims: determines if the signal is 1D, 2D, or 3D.
566
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
567
+ :param up: if True, use this block for upsampling.
568
+ :param down: if True, use this block for downsampling.
569
+ """
570
+
571
+ def __init__(
572
+ self,
573
+ channels: int,
574
+ emb_channels: int,
575
+ dropout: float,
576
+ out_channels: Optional[int] = None,
577
+ use_conv: bool = False,
578
+ use_scale_shift_norm: bool = False,
579
+ dims: int = 2,
580
+ use_checkpoint: bool = False,
581
+ up: bool = False,
582
+ down: bool = False,
583
+ kernel_size: int = 3,
584
+ exchange_temb_dims: bool = False,
585
+ skip_t_emb: bool = False,
586
+ ):
587
+ super().__init__()
588
+ self.channels = channels
589
+ self.emb_channels = emb_channels
590
+ self.dropout = dropout
591
+ self.out_channels = out_channels or channels
592
+ self.use_conv = use_conv
593
+ self.use_checkpoint = use_checkpoint
594
+ self.use_scale_shift_norm = use_scale_shift_norm
595
+ self.exchange_temb_dims = exchange_temb_dims
596
+
597
+ if isinstance(kernel_size, Iterable):
598
+ padding = [k // 2 for k in kernel_size]
599
+ else:
600
+ padding = kernel_size // 2
601
+
602
+ self.in_layers = nn.Sequential(
603
+ normalization(channels),
604
+ nn.SiLU(),
605
+ conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
606
+ )
607
+
608
+ self.updown = up or down
609
+
610
+ if up:
611
+ self.h_upd = Upsample(channels, False, dims)
612
+ self.x_upd = Upsample(channels, False, dims)
613
+ elif down:
614
+ self.h_upd = Downsample(channels, False, dims)
615
+ self.x_upd = Downsample(channels, False, dims)
616
+ else:
617
+ self.h_upd = self.x_upd = nn.Identity()
618
+
619
+ self.skip_t_emb = skip_t_emb
620
+ self.emb_out_channels = (
621
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels
622
+ )
623
+ if self.skip_t_emb:
624
+ # print(f"Skipping timestep embedding in {self.__class__.__name__}")
625
+ assert not self.use_scale_shift_norm
626
+ self.emb_layers = None
627
+ self.exchange_temb_dims = False
628
+ else:
629
+ self.emb_layers = nn.Sequential(
630
+ nn.SiLU(),
631
+ linear(
632
+ emb_channels,
633
+ self.emb_out_channels,
634
+ ),
635
+ )
636
+
637
+ self.out_layers = nn.Sequential(
638
+ normalization(self.out_channels),
639
+ nn.SiLU(),
640
+ nn.Dropout(p=dropout),
641
+ zero_module(
642
+ conv_nd(
643
+ dims,
644
+ self.out_channels,
645
+ self.out_channels,
646
+ kernel_size,
647
+ padding=padding,
648
+ )
649
+ ),
650
+ )
651
+
652
+ if self.out_channels == channels:
653
+ self.skip_connection = nn.Identity()
654
+ elif use_conv:
655
+ self.skip_connection = conv_nd(
656
+ dims, channels, self.out_channels, kernel_size, padding=padding
657
+ )
658
+ else:
659
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
660
+
661
+ def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
662
+ """
663
+ Apply the block to a Tensor, conditioned on a timestep embedding.
664
+ :param x: an [N x C x ...] Tensor of features.
665
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
666
+ :return: an [N x C x ...] Tensor of outputs.
667
+ """
668
+ if self.use_checkpoint:
669
+ return checkpoint(self._forward, x, emb, use_reentrant=False)
670
+ else:
671
+ return self._forward(x, emb)
672
+
673
+ def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
674
+ if self.updown:
675
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
676
+ h = in_rest(x)
677
+ h = self.h_upd(h)
678
+ x = self.x_upd(x)
679
+ h = in_conv(h)
680
+ else:
681
+ h = self.in_layers(x)
682
+
683
+ if self.skip_t_emb:
684
+ emb_out = torch.zeros_like(h)
685
+ else:
686
+ emb_out = self.emb_layers(emb).type(h.dtype)
687
+ while len(emb_out.shape) < len(h.shape):
688
+ emb_out = emb_out[..., None]
689
+ if self.use_scale_shift_norm:
690
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
691
+ scale, shift = torch.chunk(emb_out, 2, dim=1)
692
+ h = out_norm(h) * (1 + scale) + shift
693
+ h = out_rest(h)
694
+ else:
695
+ if self.exchange_temb_dims:
696
+ emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
697
+ h = h + emb_out
698
+ h = self.out_layers(h)
699
+ return self.skip_connection(x) + h
700
+ #####
701
+
702
+ #####
703
+ from lvdm.modules.attention_svd import *
704
+ class VideoTransformerBlock(nn.Module):
705
+ ATTENTION_MODES = {
706
+ "softmax": CrossAttention,
707
+ "softmax-xformers": MemoryEfficientCrossAttention,
708
+ }
709
+
710
+ def __init__(
711
+ self,
712
+ dim,
713
+ n_heads,
714
+ d_head,
715
+ dropout=0.0,
716
+ context_dim=None,
717
+ gated_ff=True,
718
+ checkpoint=True,
719
+ timesteps=None,
720
+ ff_in=False,
721
+ inner_dim=None,
722
+ attn_mode="softmax",
723
+ disable_self_attn=False,
724
+ disable_temporal_crossattention=False,
725
+ switch_temporal_ca_to_sa=False,
726
+ ):
727
+ super().__init__()
728
+
729
+ attn_cls = self.ATTENTION_MODES[attn_mode]
730
+
731
+ self.ff_in = ff_in or inner_dim is not None
732
+ if inner_dim is None:
733
+ inner_dim = dim
734
+
735
+ assert int(n_heads * d_head) == inner_dim
736
+
737
+ self.is_res = inner_dim == dim
738
+
739
+ if self.ff_in:
740
+ self.norm_in = nn.LayerNorm(dim)
741
+ self.ff_in = FeedForward(
742
+ dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff
743
+ )
744
+
745
+ self.timesteps = timesteps
746
+ self.disable_self_attn = disable_self_attn
747
+ if self.disable_self_attn:
748
+ self.attn1 = attn_cls(
749
+ query_dim=inner_dim,
750
+ heads=n_heads,
751
+ dim_head=d_head,
752
+ context_dim=context_dim,
753
+ dropout=dropout,
754
+ ) # is a cross-attention
755
+ else:
756
+ self.attn1 = attn_cls(
757
+ query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
758
+ ) # is a self-attention
759
+
760
+ self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)
761
+
762
+ if disable_temporal_crossattention:
763
+ if switch_temporal_ca_to_sa:
764
+ raise ValueError
765
+ else:
766
+ self.attn2 = None
767
+ else:
768
+ self.norm2 = nn.LayerNorm(inner_dim)
769
+ if switch_temporal_ca_to_sa:
770
+ self.attn2 = attn_cls(
771
+ query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
772
+ ) # is a self-attention
773
+ else:
774
+ self.attn2 = attn_cls(
775
+ query_dim=inner_dim,
776
+ context_dim=context_dim,
777
+ heads=n_heads,
778
+ dim_head=d_head,
779
+ dropout=dropout,
780
+ ) # is self-attn if context is none
781
+
782
+ self.norm1 = nn.LayerNorm(inner_dim)
783
+ self.norm3 = nn.LayerNorm(inner_dim)
784
+ self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
785
+
786
+ self.checkpoint = checkpoint
787
+ if self.checkpoint:
788
+ print(f"====>{self.__class__.__name__} is using checkpointing")
789
+ else:
790
+ print(f"====>{self.__class__.__name__} is NOT using checkpointing")
791
+
792
+ def forward(
793
+ self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None
794
+ ) -> torch.Tensor:
795
+ if self.checkpoint:
796
+ return checkpoint(self._forward, x, context, timesteps, use_reentrant=False)
797
+ else:
798
+ return self._forward(x, context, timesteps=timesteps)
799
+
800
+ def _forward(self, x, context=None, timesteps=None):
801
+ assert self.timesteps or timesteps
802
+ assert not (self.timesteps and timesteps) or self.timesteps == timesteps
803
+ timesteps = self.timesteps or timesteps
804
+ B, S, C = x.shape
805
+ x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps)
806
+
807
+ if self.ff_in:
808
+ x_skip = x
809
+ x = self.ff_in(self.norm_in(x))
810
+ if self.is_res:
811
+ x += x_skip
812
+
813
+ if self.disable_self_attn:
814
+ x = self.attn1(self.norm1(x), context=context) + x
815
+ else:
816
+ x = self.attn1(self.norm1(x)) + x
817
+
818
+ if self.attn2 is not None:
819
+ if self.switch_temporal_ca_to_sa:
820
+ x = self.attn2(self.norm2(x)) + x
821
+ else:
822
+ x = self.attn2(self.norm2(x), context=context) + x
823
+ x_skip = x
824
+ x = self.ff(self.norm3(x))
825
+ if self.is_res:
826
+ x += x_skip
827
+
828
+ x = rearrange(
829
+ x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
830
+ )
831
+ return x
832
+
833
+ def get_last_layer(self):
834
+ return self.ff.net[-1].weight
835
+
836
+ #####
837
+
838
+ #####
839
+ import functools
840
+ def partialclass(cls, *args, **kwargs):
841
+ class NewCls(cls):
842
+ __init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
843
+
844
+ return NewCls
845
+ ######
846
+
847
+ class VideoResBlock(ResnetBlock):
848
+ def __init__(
849
+ self,
850
+ out_channels,
851
+ *args,
852
+ dropout=0.0,
853
+ video_kernel_size=3,
854
+ alpha=0.0,
855
+ merge_strategy="learned",
856
+ **kwargs,
857
+ ):
858
+ super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
859
+ if video_kernel_size is None:
860
+ video_kernel_size = [3, 1, 1]
861
+ self.time_stack = ResBlock(
862
+ channels=out_channels,
863
+ emb_channels=0,
864
+ dropout=dropout,
865
+ dims=3,
866
+ use_scale_shift_norm=False,
867
+ use_conv=False,
868
+ up=False,
869
+ down=False,
870
+ kernel_size=video_kernel_size,
871
+ use_checkpoint=True,
872
+ skip_t_emb=True,
873
+ )
874
+
875
+ self.merge_strategy = merge_strategy
876
+ if self.merge_strategy == "fixed":
877
+ self.register_buffer("mix_factor", torch.Tensor([alpha]))
878
+ elif self.merge_strategy == "learned":
879
+ self.register_parameter(
880
+ "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
881
+ )
882
+ else:
883
+ raise ValueError(f"unknown merge strategy {self.merge_strategy}")
884
+
885
+ def get_alpha(self, bs):
886
+ if self.merge_strategy == "fixed":
887
+ return self.mix_factor
888
+ elif self.merge_strategy == "learned":
889
+ return torch.sigmoid(self.mix_factor)
890
+ else:
891
+ raise NotImplementedError()
892
+
893
+ def forward(self, x, temb, skip_video=False, timesteps=None):
894
+ if timesteps is None:
895
+ timesteps = self.timesteps
896
+
897
+ b, c, h, w = x.shape
898
+
899
+ x = super().forward(x, temb)
900
+
901
+ if not skip_video:
902
+ x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
903
+
904
+ x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
905
+
906
+ x = self.time_stack(x, temb)
907
+
908
+ alpha = self.get_alpha(bs=b // timesteps)
909
+ x = alpha * x + (1.0 - alpha) * x_mix
910
+
911
+ x = rearrange(x, "b c t h w -> (b t) c h w")
912
+ return x
913
+
914
+
915
+ class AE3DConv(torch.nn.Conv2d):
916
+ def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
917
+ super().__init__(in_channels, out_channels, *args, **kwargs)
918
+ if isinstance(video_kernel_size, Iterable):
919
+ padding = [int(k // 2) for k in video_kernel_size]
920
+ else:
921
+ padding = int(video_kernel_size // 2)
922
+
923
+ self.time_mix_conv = torch.nn.Conv3d(
924
+ in_channels=out_channels,
925
+ out_channels=out_channels,
926
+ kernel_size=video_kernel_size,
927
+ padding=padding,
928
+ )
929
+
930
+ def forward(self, input, timesteps, skip_video=False):
931
+ x = super().forward(input)
932
+ if skip_video:
933
+ return x
934
+ x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
935
+ x = self.time_mix_conv(x)
936
+ return rearrange(x, "b c t h w -> (b t) c h w")
937
+
938
+
939
+ class VideoBlock(AttnBlock):
940
+ def __init__(
941
+ self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
942
+ ):
943
+ super().__init__(in_channels)
944
+ # no context, single headed, as in base class
945
+ self.time_mix_block = VideoTransformerBlock(
946
+ dim=in_channels,
947
+ n_heads=1,
948
+ d_head=in_channels,
949
+ checkpoint=True,
950
+ ff_in=True,
951
+ attn_mode="softmax",
952
+ )
953
+
954
+ time_embed_dim = self.in_channels * 4
955
+ self.video_time_embed = torch.nn.Sequential(
956
+ torch.nn.Linear(self.in_channels, time_embed_dim),
957
+ torch.nn.SiLU(),
958
+ torch.nn.Linear(time_embed_dim, self.in_channels),
959
+ )
960
+
961
+ self.merge_strategy = merge_strategy
962
+ if self.merge_strategy == "fixed":
963
+ self.register_buffer("mix_factor", torch.Tensor([alpha]))
964
+ elif self.merge_strategy == "learned":
965
+ self.register_parameter(
966
+ "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
967
+ )
968
+ else:
969
+ raise ValueError(f"unknown merge strategy {self.merge_strategy}")
970
+
971
+ def forward(self, x, timesteps, skip_video=False):
972
+ if skip_video:
973
+ return super().forward(x)
974
+
975
+ x_in = x
976
+ x = self.attention(x)
977
+ h, w = x.shape[2:]
978
+ x = rearrange(x, "b c h w -> b (h w) c")
979
+
980
+ x_mix = x
981
+ num_frames = torch.arange(timesteps, device=x.device)
982
+ num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
983
+ num_frames = rearrange(num_frames, "b t -> (b t)")
984
+ t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
985
+ emb = self.video_time_embed(t_emb) # b, n_channels
986
+ emb = emb[:, None, :]
987
+ x_mix = x_mix + emb
988
+
989
+ alpha = self.get_alpha()
990
+ x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
991
+ x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
992
+
993
+ x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
994
+ x = self.proj_out(x)
995
+
996
+ return x_in + x
997
+
998
+ def get_alpha(
999
+ self,
1000
+ ):
1001
+ if self.merge_strategy == "fixed":
1002
+ return self.mix_factor
1003
+ elif self.merge_strategy == "learned":
1004
+ return torch.sigmoid(self.mix_factor)
1005
+ else:
1006
+ raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
1007
+
1008
+
1009
+ class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock):
1010
+ def __init__(
1011
+ self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
1012
+ ):
1013
+ super().__init__(in_channels)
1014
+ # no context, single headed, as in base class
1015
+ self.time_mix_block = VideoTransformerBlock(
1016
+ dim=in_channels,
1017
+ n_heads=1,
1018
+ d_head=in_channels,
1019
+ checkpoint=True,
1020
+ ff_in=True,
1021
+ attn_mode="softmax-xformers",
1022
+ )
1023
+
1024
+ time_embed_dim = self.in_channels * 4
1025
+ self.video_time_embed = torch.nn.Sequential(
1026
+ torch.nn.Linear(self.in_channels, time_embed_dim),
1027
+ torch.nn.SiLU(),
1028
+ torch.nn.Linear(time_embed_dim, self.in_channels),
1029
+ )
1030
+
1031
+ self.merge_strategy = merge_strategy
1032
+ if self.merge_strategy == "fixed":
1033
+ self.register_buffer("mix_factor", torch.Tensor([alpha]))
1034
+ elif self.merge_strategy == "learned":
1035
+ self.register_parameter(
1036
+ "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
1037
+ )
1038
+ else:
1039
+ raise ValueError(f"unknown merge strategy {self.merge_strategy}")
1040
+
1041
+ def forward(self, x, timesteps, skip_time_block=False):
1042
+ if skip_time_block:
1043
+ return super().forward(x)
1044
+
1045
+ x_in = x
1046
+ x = self.attention(x)
1047
+ h, w = x.shape[2:]
1048
+ x = rearrange(x, "b c h w -> b (h w) c")
1049
+
1050
+ x_mix = x
1051
+ num_frames = torch.arange(timesteps, device=x.device)
1052
+ num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
1053
+ num_frames = rearrange(num_frames, "b t -> (b t)")
1054
+ t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
1055
+ emb = self.video_time_embed(t_emb) # b, n_channels
1056
+ emb = emb[:, None, :]
1057
+ x_mix = x_mix + emb
1058
+
1059
+ alpha = self.get_alpha()
1060
+ x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
1061
+ x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
1062
+
1063
+ x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
1064
+ x = self.proj_out(x)
1065
+
1066
+ return x_in + x
1067
+
1068
+ def get_alpha(
1069
+ self,
1070
+ ):
1071
+ if self.merge_strategy == "fixed":
1072
+ return self.mix_factor
1073
+ elif self.merge_strategy == "learned":
1074
+ return torch.sigmoid(self.mix_factor)
1075
+ else:
1076
+ raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
1077
+
1078
+
1079
+ def make_time_attn(
1080
+ in_channels,
1081
+ attn_type="vanilla",
1082
+ attn_kwargs=None,
1083
+ alpha: float = 0,
1084
+ merge_strategy: str = "learned",
1085
+ ):
1086
+ assert attn_type in [
1087
+ "vanilla",
1088
+ "vanilla-xformers",
1089
+ ], f"attn_type {attn_type} not supported for spatio-temporal attention"
1090
+ print(
1091
+ f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels"
1092
+ )
1093
+ if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers":
1094
+ print(
1095
+ f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. "
1096
+ f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
1097
+ )
1098
+ attn_type = "vanilla"
1099
+
1100
+ if attn_type == "vanilla":
1101
+ assert attn_kwargs is None
1102
+ return partialclass(
1103
+ VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
1104
+ )
1105
+ elif attn_type == "vanilla-xformers":
1106
+ print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
1107
+ return partialclass(
1108
+ MemoryEfficientVideoBlock,
1109
+ in_channels,
1110
+ alpha=alpha,
1111
+ merge_strategy=merge_strategy,
1112
+ )
1113
+ else:
1114
+ return NotImplementedError()
1115
+
1116
+
1117
+ class Conv2DWrapper(torch.nn.Conv2d):
1118
+ def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
1119
+ return super().forward(input)
1120
+
1121
+
1122
+ class VideoDecoder(Decoder):
1123
+ available_time_modes = ["all", "conv-only", "attn-only"]
1124
+
1125
+ def __init__(
1126
+ self,
1127
+ *args,
1128
+ video_kernel_size: Union[int, list] = [3,1,1],
1129
+ alpha: float = 0.0,
1130
+ merge_strategy: str = "learned",
1131
+ time_mode: str = "conv-only",
1132
+ **kwargs,
1133
+ ):
1134
+ self.video_kernel_size = video_kernel_size
1135
+ self.alpha = alpha
1136
+ self.merge_strategy = merge_strategy
1137
+ self.time_mode = time_mode
1138
+ assert (
1139
+ self.time_mode in self.available_time_modes
1140
+ ), f"time_mode parameter has to be in {self.available_time_modes}"
1141
+ super().__init__(*args, **kwargs)
1142
+
1143
+ def get_last_layer(self, skip_time_mix=False, **kwargs):
1144
+ if self.time_mode == "attn-only":
1145
+ raise NotImplementedError("TODO")
1146
+ else:
1147
+ return (
1148
+ self.conv_out.time_mix_conv.weight
1149
+ if not skip_time_mix
1150
+ else self.conv_out.weight
1151
+ )
1152
+
1153
+ def _make_attn(self) -> Callable:
1154
+ if self.time_mode not in ["conv-only", "only-last-conv"]:
1155
+ return partialclass(
1156
+ make_time_attn,
1157
+ alpha=self.alpha,
1158
+ merge_strategy=self.merge_strategy,
1159
+ )
1160
+ else:
1161
+ return super()._make_attn()
1162
+
1163
+ def _make_conv(self) -> Callable:
1164
+ if self.time_mode != "attn-only":
1165
+ return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
1166
+ else:
1167
+ return Conv2DWrapper
1168
+
1169
+ def _make_resblock(self) -> Callable:
1170
+ if self.time_mode not in ["attn-only", "only-last-conv"]:
1171
+ return partialclass(
1172
+ VideoResBlock,
1173
+ video_kernel_size=self.video_kernel_size,
1174
+ alpha=self.alpha,
1175
+ merge_strategy=self.merge_strategy,
1176
+ )
1177
+ else:
1178
+ return super()._make_resblock()
lvdm/models/ddpm3d.py ADDED
@@ -0,0 +1,1312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
4
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ from functools import partial
10
+ from contextlib import contextmanager
11
+ import numpy as np
12
+ from tqdm import tqdm
13
+ from einops import rearrange, repeat
14
+ import logging
15
+ mainlogger = logging.getLogger('mainlogger')
16
+ import random
17
+ import torch
18
+ import torch.nn as nn
19
+ from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR
20
+ from torchvision.utils import make_grid
21
+ import pytorch_lightning as pl
22
+ from pytorch_lightning.utilities import rank_zero_only
23
+ from utils.utils import instantiate_from_config
24
+ from lvdm.ema import LitEma
25
+ from lvdm.models.samplers.ddim import DDIMSampler
26
+ from lvdm.distributions import DiagonalGaussianDistribution
27
+ from lvdm.models.utils_diffusion import make_beta_schedule, rescale_zero_terminal_snr
28
+ from lvdm.basics import disabled_train
29
+ from lvdm.common import (
30
+ extract_into_tensor,
31
+ noise_like,
32
+ exists,
33
+ default
34
+ )
35
+ import math
36
+ from lvdm.models.autoencoder_dualref import VideoDecoder
37
+ __conditioning_keys__ = {'concat': 'c_concat',
38
+ 'crossattn': 'c_crossattn',
39
+ 'adm': 'y'}
40
+
41
+ class DDPM(pl.LightningModule):
42
+ # classic DDPM with Gaussian diffusion, in image space
43
+ def __init__(self,
44
+ unet_config,
45
+ timesteps=1000,
46
+ beta_schedule="linear",
47
+ loss_type="l2",
48
+ ckpt_path=None,
49
+ ignore_keys=[],
50
+ load_only_unet=False,
51
+ monitor=None,
52
+ use_ema=True,
53
+ first_stage_key="image",
54
+ image_size=256,
55
+ channels=3,
56
+ log_every_t=100,
57
+ clip_denoised=True,
58
+ linear_start=1e-4,
59
+ linear_end=2e-2,
60
+ cosine_s=8e-3,
61
+ given_betas=None,
62
+ original_elbo_weight=0.,
63
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
64
+ l_simple_weight=1.,
65
+ conditioning_key=None,
66
+ parameterization="eps", # all assuming fixed variance schedules
67
+ scheduler_config=None,
68
+ use_positional_encodings=False,
69
+ learn_logvar=False,
70
+ logvar_init=0.,
71
+ rescale_betas_zero_snr=False,
72
+ ):
73
+ super().__init__()
74
+ assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
75
+ self.parameterization = parameterization
76
+ mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
77
+ self.cond_stage_model = None
78
+ self.clip_denoised = clip_denoised
79
+ self.log_every_t = log_every_t
80
+ self.first_stage_key = first_stage_key
81
+ self.channels = channels
82
+ self.temporal_length = unet_config.params.temporal_length
83
+ self.image_size = image_size # try conv?
84
+ if isinstance(self.image_size, int):
85
+ self.image_size = [self.image_size, self.image_size]
86
+ self.use_positional_encodings = use_positional_encodings
87
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
88
+ #count_params(self.model, verbose=True)
89
+ self.use_ema = use_ema
90
+ self.rescale_betas_zero_snr = rescale_betas_zero_snr
91
+ if self.use_ema:
92
+ self.model_ema = LitEma(self.model)
93
+ mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
94
+
95
+ self.use_scheduler = scheduler_config is not None
96
+ if self.use_scheduler:
97
+ self.scheduler_config = scheduler_config
98
+
99
+ self.v_posterior = v_posterior
100
+ self.original_elbo_weight = original_elbo_weight
101
+ self.l_simple_weight = l_simple_weight
102
+
103
+ if monitor is not None:
104
+ self.monitor = monitor
105
+ if ckpt_path is not None:
106
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
107
+
108
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
109
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
110
+
111
+ ## for reschedule
112
+ self.given_betas = given_betas
113
+ self.beta_schedule = beta_schedule
114
+ self.timesteps = timesteps
115
+ self.cosine_s = cosine_s
116
+
117
+ self.loss_type = loss_type
118
+
119
+ self.learn_logvar = learn_logvar
120
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
121
+ if self.learn_logvar:
122
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
123
+
124
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
125
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
126
+ if exists(given_betas):
127
+ betas = given_betas
128
+ else:
129
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
130
+ cosine_s=cosine_s)
131
+ if self.rescale_betas_zero_snr:
132
+ betas = rescale_zero_terminal_snr(betas)
133
+
134
+ alphas = 1. - betas
135
+ alphas_cumprod = np.cumprod(alphas, axis=0)
136
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
137
+
138
+ timesteps, = betas.shape
139
+ self.num_timesteps = int(timesteps)
140
+ self.linear_start = linear_start
141
+ self.linear_end = linear_end
142
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
143
+
144
+ to_torch = partial(torch.tensor, dtype=torch.float32)
145
+
146
+ self.register_buffer('betas', to_torch(betas))
147
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
148
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
149
+
150
+ # calculations for diffusion q(x_t | x_{t-1}) and others
151
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
152
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
153
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
154
+
155
+ if self.parameterization != 'v':
156
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
157
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
158
+ else:
159
+ self.register_buffer('sqrt_recip_alphas_cumprod', torch.zeros_like(to_torch(alphas_cumprod)))
160
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.zeros_like(to_torch(alphas_cumprod)))
161
+
162
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
163
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
164
+ 1. - alphas_cumprod) + self.v_posterior * betas
165
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
166
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
167
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
168
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
169
+ self.register_buffer('posterior_mean_coef1', to_torch(
170
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
171
+ self.register_buffer('posterior_mean_coef2', to_torch(
172
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
173
+
174
+ if self.parameterization == "eps":
175
+ lvlb_weights = self.betas ** 2 / (
176
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
177
+ elif self.parameterization == "x0":
178
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
179
+ elif self.parameterization == "v":
180
+ lvlb_weights = torch.ones_like(self.betas ** 2 / (
181
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
182
+ else:
183
+ raise NotImplementedError("mu not supported")
184
+ # TODO how to choose this term
185
+ lvlb_weights[0] = lvlb_weights[1]
186
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
187
+ assert not torch.isnan(self.lvlb_weights).all()
188
+
189
+ @contextmanager
190
+ def ema_scope(self, context=None):
191
+ if self.use_ema:
192
+ self.model_ema.store(self.model.parameters())
193
+ self.model_ema.copy_to(self.model)
194
+ if context is not None:
195
+ mainlogger.info(f"{context}: Switched to EMA weights")
196
+ try:
197
+ yield None
198
+ finally:
199
+ if self.use_ema:
200
+ self.model_ema.restore(self.model.parameters())
201
+ if context is not None:
202
+ mainlogger.info(f"{context}: Restored training weights")
203
+
204
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
205
+ sd = torch.load(path, map_location="cpu")
206
+ if "state_dict" in list(sd.keys()):
207
+ sd = sd["state_dict"]
208
+ keys = list(sd.keys())
209
+ for k in keys:
210
+ for ik in ignore_keys:
211
+ if k.startswith(ik):
212
+ mainlogger.info("Deleting key {} from state_dict.".format(k))
213
+ del sd[k]
214
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
215
+ sd, strict=False)
216
+ mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
217
+ if len(missing) > 0:
218
+ mainlogger.info(f"Missing Keys: {missing}")
219
+ if len(unexpected) > 0:
220
+ mainlogger.info(f"Unexpected Keys: {unexpected}")
221
+
222
+ def q_mean_variance(self, x_start, t):
223
+ """
224
+ Get the distribution q(x_t | x_0).
225
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
226
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
227
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
228
+ """
229
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
230
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
231
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
232
+ return mean, variance, log_variance
233
+
234
+ def predict_start_from_noise(self, x_t, t, noise):
235
+ return (
236
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
237
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
238
+ )
239
+
240
+ def predict_start_from_z_and_v(self, x_t, t, v):
241
+ # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
242
+ # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
243
+ return (
244
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
245
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
246
+ )
247
+
248
+ def predict_eps_from_z_and_v(self, x_t, t, v):
249
+ return (
250
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
251
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
252
+ )
253
+
254
+ def q_posterior(self, x_start, x_t, t):
255
+ posterior_mean = (
256
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
257
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
258
+ )
259
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
260
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
261
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
262
+
263
+ def p_mean_variance(self, x, t, clip_denoised: bool):
264
+ model_out = self.model(x, t)
265
+ if self.parameterization == "eps":
266
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
267
+ elif self.parameterization == "x0":
268
+ x_recon = model_out
269
+ if clip_denoised:
270
+ x_recon.clamp_(-1., 1.)
271
+
272
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
273
+ return model_mean, posterior_variance, posterior_log_variance
274
+
275
+ @torch.no_grad()
276
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
277
+ b, *_, device = *x.shape, x.device
278
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
279
+ noise = noise_like(x.shape, device, repeat_noise)
280
+ # no noise when t == 0
281
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
282
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
283
+
284
+ @torch.no_grad()
285
+ def p_sample_loop(self, shape, return_intermediates=False):
286
+ device = self.betas.device
287
+ b = shape[0]
288
+ img = torch.randn(shape, device=device)
289
+ intermediates = [img]
290
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
291
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
292
+ clip_denoised=self.clip_denoised)
293
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
294
+ intermediates.append(img)
295
+ if return_intermediates:
296
+ return img, intermediates
297
+ return img
298
+
299
+ @torch.no_grad()
300
+ def sample(self, batch_size=16, return_intermediates=False):
301
+ image_size = self.image_size
302
+ channels = self.channels
303
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
304
+ return_intermediates=return_intermediates)
305
+
306
+ def q_sample(self, x_start, t, noise=None):
307
+ noise = default(noise, lambda: torch.randn_like(x_start))
308
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
309
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
310
+
311
+ def get_v(self, x, noise, t):
312
+ return (
313
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
314
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
315
+ )
316
+
317
+ def get_loss(self, pred, target, mean=True):
318
+ if self.loss_type == 'l1':
319
+ loss = (target - pred).abs()
320
+ if mean:
321
+ loss = loss.mean()
322
+ elif self.loss_type == 'l2':
323
+ if mean:
324
+ loss = torch.nn.functional.mse_loss(target, pred)
325
+ else:
326
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
327
+ else:
328
+ raise NotImplementedError("unknown loss type '{loss_type}'")
329
+
330
+ return loss
331
+
332
+ def p_losses(self, x_start, t, noise=None):
333
+ noise = default(noise, lambda: torch.randn_like(x_start))
334
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
335
+ model_out = self.model(x_noisy, t)
336
+
337
+ loss_dict = {}
338
+ if self.parameterization == "eps":
339
+ target = noise
340
+ elif self.parameterization == "x0":
341
+ target = x_start
342
+ elif self.parameterization == "v":
343
+ target = self.get_v(x_start, noise, t)
344
+ else:
345
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
346
+
347
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
348
+
349
+ log_prefix = 'train' if self.training else 'val'
350
+
351
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
352
+ loss_simple = loss.mean() * self.l_simple_weight
353
+
354
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
355
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
356
+
357
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
358
+
359
+ loss_dict.update({f'{log_prefix}/loss': loss})
360
+
361
+ return loss, loss_dict
362
+
363
+ def forward(self, x, *args, **kwargs):
364
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
365
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
366
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
367
+ return self.p_losses(x, t, *args, **kwargs)
368
+
369
+ def get_input(self, batch, k):
370
+ x = batch[k]
371
+ '''
372
+ if len(x.shape) == 3:
373
+ x = x[..., None]
374
+ x = rearrange(x, 'b h w c -> b c h w')
375
+ '''
376
+ x = x.to(memory_format=torch.contiguous_format).float()
377
+ return x
378
+
379
+ def shared_step(self, batch):
380
+ x = self.get_input(batch, self.first_stage_key)
381
+ loss, loss_dict = self(x)
382
+ return loss, loss_dict
383
+
384
+ def training_step(self, batch, batch_idx):
385
+ loss, loss_dict = self.shared_step(batch)
386
+
387
+ self.log_dict(loss_dict, prog_bar=True,
388
+ logger=True, on_step=True, on_epoch=True)
389
+
390
+ self.log("global_step", self.global_step,
391
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
392
+
393
+ if self.use_scheduler:
394
+ lr = self.optimizers().param_groups[0]['lr']
395
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
396
+
397
+ return loss
398
+
399
+ @torch.no_grad()
400
+ def validation_step(self, batch, batch_idx):
401
+ _, loss_dict_no_ema = self.shared_step(batch)
402
+ with self.ema_scope():
403
+ _, loss_dict_ema = self.shared_step(batch)
404
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
405
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
406
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
407
+
408
+ def on_train_batch_end(self, *args, **kwargs):
409
+ if self.use_ema:
410
+ self.model_ema(self.model)
411
+
412
+ def _get_rows_from_list(self, samples):
413
+ n_imgs_per_row = len(samples)
414
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
415
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
416
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
417
+ return denoise_grid
418
+
419
+ @torch.no_grad()
420
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
421
+ log = dict()
422
+ x = self.get_input(batch, self.first_stage_key)
423
+ N = min(x.shape[0], N)
424
+ n_row = min(x.shape[0], n_row)
425
+ x = x.to(self.device)[:N]
426
+ log["inputs"] = x
427
+
428
+ # get diffusion row
429
+ diffusion_row = list()
430
+ x_start = x[:n_row]
431
+
432
+ for t in range(self.num_timesteps):
433
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
434
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
435
+ t = t.to(self.device).long()
436
+ noise = torch.randn_like(x_start)
437
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
438
+ diffusion_row.append(x_noisy)
439
+
440
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
441
+
442
+ if sample:
443
+ # get denoise row
444
+ with self.ema_scope("Plotting"):
445
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
446
+
447
+ log["samples"] = samples
448
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
449
+
450
+ if return_keys:
451
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
452
+ return log
453
+ else:
454
+ return {key: log[key] for key in return_keys}
455
+ return log
456
+
457
+ def configure_optimizers(self):
458
+ lr = self.learning_rate
459
+ params = list(self.model.parameters())
460
+ if self.learn_logvar:
461
+ params = params + [self.logvar]
462
+ opt = torch.optim.AdamW(params, lr=lr)
463
+ return opt
464
+
465
+ class LatentDiffusion(DDPM):
466
+ """main class"""
467
+ def __init__(self,
468
+ first_stage_config,
469
+ cond_stage_config,
470
+ num_timesteps_cond=None,
471
+ cond_stage_key="caption",
472
+ cond_stage_trainable=False,
473
+ cond_stage_forward=None,
474
+ conditioning_key=None,
475
+ uncond_prob=0.2,
476
+ uncond_type="empty_seq",
477
+ scale_factor=1.0,
478
+ scale_by_std=False,
479
+ encoder_type="2d",
480
+ only_model=False,
481
+ noise_strength=0,
482
+ use_dynamic_rescale=False,
483
+ base_scale=0.7,
484
+ turning_step=400,
485
+ loop_video=False,
486
+ fps_condition_type='fs',
487
+ perframe_ae=False,
488
+ # added
489
+ logdir=None,
490
+ rand_cond_frame=False,
491
+ en_and_decode_n_samples_a_time=None,
492
+ *args, **kwargs):
493
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
494
+ self.scale_by_std = scale_by_std
495
+ assert self.num_timesteps_cond <= kwargs['timesteps']
496
+ # for backwards compatibility after implementation of DiffusionWrapper
497
+ ckpt_path = kwargs.pop("ckpt_path", None)
498
+ ignore_keys = kwargs.pop("ignore_keys", [])
499
+ conditioning_key = default(conditioning_key, 'crossattn')
500
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
501
+
502
+ self.cond_stage_trainable = cond_stage_trainable
503
+ self.cond_stage_key = cond_stage_key
504
+ self.noise_strength = noise_strength
505
+ self.use_dynamic_rescale = use_dynamic_rescale
506
+ self.loop_video = loop_video
507
+ self.fps_condition_type = fps_condition_type
508
+ self.perframe_ae = perframe_ae
509
+
510
+ self.logdir = logdir
511
+ self.rand_cond_frame = rand_cond_frame
512
+ self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
513
+
514
+ try:
515
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
516
+ except:
517
+ self.num_downs = 0
518
+ if not scale_by_std:
519
+ self.scale_factor = scale_factor
520
+ else:
521
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
522
+
523
+ if use_dynamic_rescale:
524
+ scale_arr1 = np.linspace(1.0, base_scale, turning_step)
525
+ scale_arr2 = np.full(self.num_timesteps, base_scale)
526
+ scale_arr = np.concatenate((scale_arr1, scale_arr2))
527
+ to_torch = partial(torch.tensor, dtype=torch.float32)
528
+ self.register_buffer('scale_arr', to_torch(scale_arr))
529
+
530
+ self.instantiate_first_stage(first_stage_config)
531
+ self.instantiate_cond_stage(cond_stage_config)
532
+ self.first_stage_config = first_stage_config
533
+ self.cond_stage_config = cond_stage_config
534
+ self.clip_denoised = False
535
+
536
+ self.cond_stage_forward = cond_stage_forward
537
+ self.encoder_type = encoder_type
538
+ assert(encoder_type in ["2d", "3d"])
539
+ self.uncond_prob = uncond_prob
540
+ self.classifier_free_guidance = True if uncond_prob > 0 else False
541
+ assert(uncond_type in ["zero_embed", "empty_seq"])
542
+ self.uncond_type = uncond_type
543
+
544
+ self.restarted_from_ckpt = False
545
+ if ckpt_path is not None:
546
+ self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
547
+ self.restarted_from_ckpt = True
548
+
549
+ def make_cond_schedule(self, ):
550
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
551
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
552
+ self.cond_ids[:self.num_timesteps_cond] = ids
553
+
554
+ @rank_zero_only
555
+ @torch.no_grad()
556
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None):
557
+ # only for very first batch, reset the self.scale_factor
558
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and \
559
+ not self.restarted_from_ckpt:
560
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
561
+ # set rescale weight to 1./std of encodings
562
+ mainlogger.info("### USING STD-RESCALING ###")
563
+ x = super().get_input(batch, self.first_stage_key)
564
+ x = x.to(self.device)
565
+ encoder_posterior = self.encode_first_stage(x)
566
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
567
+ del self.scale_factor
568
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
569
+ mainlogger.info(f"setting self.scale_factor to {self.scale_factor}")
570
+ mainlogger.info("### USING STD-RESCALING ###")
571
+ mainlogger.info(f"std={z.flatten().std()}")
572
+
573
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
574
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
575
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
576
+
577
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
578
+ if self.shorten_cond_schedule:
579
+ self.make_cond_schedule()
580
+
581
+ def instantiate_first_stage(self, config):
582
+ model = instantiate_from_config(config)
583
+ self.first_stage_model = model.eval()
584
+ self.first_stage_model.train = disabled_train
585
+ for param in self.first_stage_model.parameters():
586
+ param.requires_grad = False
587
+
588
+ def instantiate_cond_stage(self, config):
589
+ if not self.cond_stage_trainable:
590
+ model = instantiate_from_config(config)
591
+ self.cond_stage_model = model.eval()
592
+ self.cond_stage_model.train = disabled_train
593
+ for param in self.cond_stage_model.parameters():
594
+ param.requires_grad = False
595
+ else:
596
+ model = instantiate_from_config(config)
597
+ self.cond_stage_model = model
598
+
599
+ def get_learned_conditioning(self, c):
600
+ if self.cond_stage_forward is None:
601
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
602
+ c = self.cond_stage_model.encode(c)
603
+ if isinstance(c, DiagonalGaussianDistribution):
604
+ c = c.mode()
605
+ else:
606
+ c = self.cond_stage_model(c)
607
+ else:
608
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
609
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
610
+ return c
611
+
612
+ def get_first_stage_encoding(self, encoder_posterior, noise=None):
613
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
614
+ z = encoder_posterior.sample(noise=noise)
615
+ elif isinstance(encoder_posterior, torch.Tensor):
616
+ z = encoder_posterior
617
+ else:
618
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
619
+ return self.scale_factor * z
620
+
621
+ @torch.no_grad()
622
+ def encode_first_stage(self, x):
623
+ if self.encoder_type == "2d" and x.dim() == 5:
624
+ b, _, t, _, _ = x.shape
625
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
626
+ reshape_back = True
627
+ else:
628
+ reshape_back = False
629
+
630
+ ## consume more GPU memory but faster
631
+ if not self.perframe_ae:
632
+ encoder_posterior = self.first_stage_model.encode(x)
633
+ results = self.get_first_stage_encoding(encoder_posterior).detach()
634
+ else: ## consume less GPU memory but slower
635
+ results = []
636
+ for index in range(x.shape[0]):
637
+ frame_batch = self.first_stage_model.encode(x[index:index+1,:,:,:])
638
+ frame_result = self.get_first_stage_encoding(frame_batch).detach()
639
+ results.append(frame_result)
640
+ results = torch.cat(results, dim=0)
641
+
642
+ if reshape_back:
643
+ results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
644
+
645
+ return results
646
+
647
+ def decode_core(self, z, **kwargs):
648
+ if self.encoder_type == "2d" and z.dim() == 5:
649
+ b, _, t, _, _ = z.shape
650
+ z = rearrange(z, 'b c t h w -> (b t) c h w')
651
+ reshape_back = True
652
+ else:
653
+ reshape_back = False
654
+
655
+ z = 1. / self.scale_factor * z
656
+ if not self.perframe_ae:
657
+ results = self.first_stage_model.decode(z, **kwargs)
658
+ else:
659
+
660
+ results = []
661
+
662
+ n_samples = default(self.en_and_decode_n_samples_a_time, self.temporal_length)
663
+ n_rounds = math.ceil(z.shape[0] / n_samples)
664
+ with torch.autocast("cuda", enabled=True):
665
+ for n in range(n_rounds):
666
+ if isinstance(self.first_stage_model.decoder, VideoDecoder):
667
+ kwargs.update({"timesteps": len(z[n * n_samples : (n + 1) * n_samples])})
668
+ else:
669
+ kwargs = {}
670
+
671
+ out = self.first_stage_model.decode(
672
+ z[n * n_samples : (n + 1) * n_samples], **kwargs
673
+ )
674
+ results.append(out)
675
+ results = torch.cat(results, dim=0)
676
+
677
+ if reshape_back:
678
+ results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
679
+ return results
680
+
681
+ @torch.no_grad()
682
+ def decode_first_stage(self, z, **kwargs):
683
+ return self.decode_core(z, **kwargs)
684
+
685
+ # same as above but without decorator
686
+ def differentiable_decode_first_stage(self, z, **kwargs):
687
+ return self.decode_core(z, **kwargs)
688
+
689
+ @torch.no_grad()
690
+ def get_batch_input(self, batch, random_uncond, return_first_stage_outputs=False, return_original_cond=False):
691
+ ## video shape: b, c, t, h, w
692
+ x = super().get_input(batch, self.first_stage_key)
693
+
694
+ ## encode video frames x to z via a 2D encoder
695
+ z = self.encode_first_stage(x)
696
+
697
+ ## get caption condition
698
+ cond = batch[self.cond_stage_key]
699
+ if random_uncond and self.uncond_type == 'empty_seq':
700
+ for i, ci in enumerate(cond):
701
+ if random.random() < self.uncond_prob:
702
+ cond[i] = ""
703
+ if isinstance(cond, dict) or isinstance(cond, list):
704
+ cond_emb = self.get_learned_conditioning(cond)
705
+ else:
706
+ cond_emb = self.get_learned_conditioning(cond.to(self.device))
707
+ if random_uncond and self.uncond_type == 'zero_embed':
708
+ for i, ci in enumerate(cond):
709
+ if random.random() < self.uncond_prob:
710
+ cond_emb[i] = torch.zeros_like(cond_emb[i])
711
+
712
+ out = [z, cond_emb]
713
+ ## optional output: self-reconst or caption
714
+ if return_first_stage_outputs:
715
+ xrec = self.decode_first_stage(z)
716
+ out.extend([xrec])
717
+
718
+ if return_original_cond:
719
+ out.append(cond)
720
+
721
+ return out
722
+
723
+ def forward(self, x, c, **kwargs):
724
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
725
+ if self.use_dynamic_rescale:
726
+ x = x * extract_into_tensor(self.scale_arr, t, x.shape)
727
+ return self.p_losses(x, c, t, **kwargs)
728
+
729
+ def shared_step(self, batch, random_uncond, **kwargs):
730
+ x, c = self.get_batch_input(batch, random_uncond=random_uncond)
731
+ loss, loss_dict = self(x, c, **kwargs)
732
+
733
+ return loss, loss_dict
734
+
735
+ def apply_model(self, x_noisy, t, cond, **kwargs):
736
+ if isinstance(cond, dict):
737
+ # hybrid case, cond is exptected to be a dict
738
+ pass
739
+ else:
740
+ if not isinstance(cond, list):
741
+ cond = [cond]
742
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
743
+ cond = {key: cond}
744
+
745
+ x_recon = self.model(x_noisy, t, **cond, **kwargs)
746
+
747
+ if isinstance(x_recon, tuple):
748
+ return x_recon[0]
749
+ else:
750
+ return x_recon
751
+
752
+ def p_losses(self, x_start, cond, t, noise=None, **kwargs):
753
+ if self.noise_strength > 0:
754
+ b, c, f, _, _ = x_start.shape
755
+ offset_noise = torch.randn(b, c, f, 1, 1, device=x_start.device)
756
+ noise = default(noise, lambda: torch.randn_like(x_start) + self.noise_strength * offset_noise)
757
+ else:
758
+ noise = default(noise, lambda: torch.randn_like(x_start))
759
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
760
+
761
+ model_output = self.apply_model(x_noisy, t, cond, **kwargs)
762
+
763
+ loss_dict = {}
764
+ prefix = 'train' if self.training else 'val'
765
+
766
+ if self.parameterization == "x0":
767
+ target = x_start
768
+ elif self.parameterization == "eps":
769
+ target = noise
770
+ elif self.parameterization == "v":
771
+ target = self.get_v(x_start, noise, t)
772
+ else:
773
+ raise NotImplementedError()
774
+
775
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4])
776
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
777
+
778
+ if self.logvar.device is not self.device:
779
+ self.logvar = self.logvar.to(self.device)
780
+ logvar_t = self.logvar[t]
781
+ # logvar_t = self.logvar[t.item()].to(self.device) # device conflict when ddp shared
782
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
783
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
784
+ if self.learn_logvar:
785
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
786
+ loss_dict.update({'logvar': self.logvar.data.mean()})
787
+
788
+ loss = self.l_simple_weight * loss.mean()
789
+
790
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4))
791
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
792
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
793
+ loss += (self.original_elbo_weight * loss_vlb)
794
+ loss_dict.update({f'{prefix}/loss': loss})
795
+
796
+ return loss, loss_dict
797
+
798
+ def training_step(self, batch, batch_idx):
799
+ loss, loss_dict = self.shared_step(batch, random_uncond=self.classifier_free_guidance)
800
+ ## sync_dist | rank_zero_only
801
+ self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False)
802
+ #self.log("epoch/global_step", self.global_step.float(), prog_bar=True, logger=True, on_step=True, on_epoch=False)
803
+ '''
804
+ if self.use_scheduler:
805
+ lr = self.optimizers().param_groups[0]['lr']
806
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
807
+ '''
808
+ if (batch_idx+1) % self.log_every_t == 0:
809
+ mainlogger.info(f"batch:{batch_idx}|epoch:{self.current_epoch} [globalstep:{self.global_step}]: loss={loss}")
810
+ return loss
811
+
812
+ def _get_denoise_row_from_list(self, samples, desc=''):
813
+ denoise_row = []
814
+ for zd in tqdm(samples, desc=desc):
815
+ denoise_row.append(self.decode_first_stage(zd.to(self.device)))
816
+ n_log_timesteps = len(denoise_row)
817
+
818
+ denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W
819
+
820
+ if denoise_row.dim() == 5:
821
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
822
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
823
+ denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
824
+ elif denoise_row.dim() == 6:
825
+ # video, grid_size=[n_log_timesteps*bs, t]
826
+ video_length = denoise_row.shape[3]
827
+ denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w')
828
+ denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
829
+ denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
830
+ denoise_grid = make_grid(denoise_grid, nrow=video_length)
831
+ else:
832
+ raise ValueError
833
+
834
+ return denoise_grid
835
+
836
+ @torch.no_grad()
837
+ def log_images(self, batch, sample=True, ddim_steps=200, ddim_eta=1., plot_denoise_rows=False, \
838
+ unconditional_guidance_scale=1.0, **kwargs):
839
+ """ log images for LatentDiffusion """
840
+ ##### control sampled imgae for logging, larger value may cause OOM
841
+ sampled_img_num = 2
842
+ for key in batch.keys():
843
+ batch[key] = batch[key][:sampled_img_num]
844
+
845
+ ## TBD: currently, classifier_free_guidance sampling is only supported by DDIM
846
+ use_ddim = ddim_steps is not None
847
+ log = dict()
848
+ z, c, xrec, xc = self.get_batch_input(batch, random_uncond=False,
849
+ return_first_stage_outputs=True,
850
+ return_original_cond=True)
851
+
852
+ N = xrec.shape[0]
853
+ log["reconst"] = xrec
854
+ log["condition"] = xc
855
+
856
+
857
+ if sample:
858
+ # get uncond embedding for classifier-free guidance sampling
859
+ if unconditional_guidance_scale != 1.0:
860
+ if isinstance(c, dict):
861
+ c_cat, c_emb = c["c_concat"][0], c["c_crossattn"][0]
862
+ log["condition_cat"] = c_cat
863
+ else:
864
+ c_emb = c
865
+
866
+ if self.uncond_type == "empty_seq":
867
+ prompts = N * [""]
868
+ uc = self.get_learned_conditioning(prompts)
869
+ elif self.uncond_type == "zero_embed":
870
+ uc = torch.zeros_like(c_emb)
871
+ ## hybrid case
872
+ if isinstance(c, dict):
873
+ uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]}
874
+ uc = uc_hybrid
875
+ else:
876
+ uc = None
877
+
878
+ with self.ema_scope("Plotting"):
879
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
880
+ ddim_steps=ddim_steps,eta=ddim_eta,
881
+ unconditional_guidance_scale=unconditional_guidance_scale,
882
+ unconditional_conditioning=uc, x0=z, **kwargs)
883
+ x_samples = self.decode_first_stage(samples)
884
+ log["samples"] = x_samples
885
+
886
+ if plot_denoise_rows:
887
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
888
+ log["denoise_row"] = denoise_grid
889
+
890
+ return log
891
+
892
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs):
893
+ t_in = t
894
+ model_out = self.apply_model(x, t_in, c, **kwargs)
895
+
896
+ if score_corrector is not None:
897
+ assert self.parameterization == "eps"
898
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
899
+
900
+ if self.parameterization == "eps":
901
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
902
+ elif self.parameterization == "x0":
903
+ x_recon = model_out
904
+ else:
905
+ raise NotImplementedError()
906
+
907
+ if clip_denoised:
908
+ x_recon.clamp_(-1., 1.)
909
+
910
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
911
+
912
+ if return_x0:
913
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
914
+ else:
915
+ return model_mean, posterior_variance, posterior_log_variance
916
+
917
+ @torch.no_grad()
918
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \
919
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs):
920
+ b, *_, device = *x.shape, x.device
921
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \
922
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs)
923
+ if return_x0:
924
+ model_mean, _, model_log_variance, x0 = outputs
925
+ else:
926
+ model_mean, _, model_log_variance = outputs
927
+
928
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
929
+ if noise_dropout > 0.:
930
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
931
+ # no noise when t == 0
932
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
933
+
934
+ if return_x0:
935
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
936
+ else:
937
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
938
+
939
+ @torch.no_grad()
940
+ def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \
941
+ timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs):
942
+
943
+ if not log_every_t:
944
+ log_every_t = self.log_every_t
945
+ device = self.betas.device
946
+ b = shape[0]
947
+ # sample an initial noise
948
+ if x_T is None:
949
+ img = torch.randn(shape, device=device)
950
+ else:
951
+ img = x_T
952
+
953
+ intermediates = [img]
954
+ if timesteps is None:
955
+ timesteps = self.num_timesteps
956
+ if start_T is not None:
957
+ timesteps = min(timesteps, start_T)
958
+
959
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps))
960
+
961
+ if mask is not None:
962
+ assert x0 is not None
963
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
964
+
965
+ for i in iterator:
966
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
967
+ if self.shorten_cond_schedule:
968
+ assert self.model.conditioning_key != 'hybrid'
969
+ tc = self.cond_ids[ts].to(cond.device)
970
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
971
+
972
+ img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs)
973
+ if mask is not None:
974
+ img_orig = self.q_sample(x0, ts)
975
+ img = img_orig * mask + (1. - mask) * img
976
+
977
+ if i % log_every_t == 0 or i == timesteps - 1:
978
+ intermediates.append(img)
979
+ if callback: callback(i)
980
+ if img_callback: img_callback(img, i)
981
+
982
+ if return_intermediates:
983
+ return img, intermediates
984
+ return img
985
+
986
+ @torch.no_grad()
987
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, \
988
+ verbose=True, timesteps=None, mask=None, x0=None, shape=None, **kwargs):
989
+ if shape is None:
990
+ shape = (batch_size, self.channels, self.temporal_length, *self.image_size)
991
+ if cond is not None:
992
+ if isinstance(cond, dict):
993
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
994
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
995
+ else:
996
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
997
+ return self.p_sample_loop(cond,
998
+ shape,
999
+ return_intermediates=return_intermediates, x_T=x_T,
1000
+ verbose=verbose, timesteps=timesteps,
1001
+ mask=mask, x0=x0, **kwargs)
1002
+
1003
+ @torch.no_grad()
1004
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1005
+ if ddim:
1006
+ ddim_sampler = DDIMSampler(self)
1007
+ shape = (self.channels, self.temporal_length, *self.image_size)
1008
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
1009
+
1010
+ else:
1011
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs)
1012
+
1013
+ return samples, intermediates
1014
+
1015
+ def configure_schedulers(self, optimizer):
1016
+ assert 'target' in self.scheduler_config
1017
+ scheduler_name = self.scheduler_config.target.split('.')[-1]
1018
+ interval = self.scheduler_config.interval
1019
+ frequency = self.scheduler_config.frequency
1020
+ if scheduler_name == "LambdaLRScheduler":
1021
+ scheduler = instantiate_from_config(self.scheduler_config)
1022
+ scheduler.start_step = self.global_step
1023
+ lr_scheduler = {
1024
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
1025
+ 'interval': interval,
1026
+ 'frequency': frequency
1027
+ }
1028
+ elif scheduler_name == "CosineAnnealingLRScheduler":
1029
+ scheduler = instantiate_from_config(self.scheduler_config)
1030
+ decay_steps = scheduler.decay_steps
1031
+ last_step = -1 if self.global_step == 0 else scheduler.start_step
1032
+ lr_scheduler = {
1033
+ 'scheduler': CosineAnnealingLR(optimizer, T_max=decay_steps, last_epoch=last_step),
1034
+ 'interval': interval,
1035
+ 'frequency': frequency
1036
+ }
1037
+ else:
1038
+ raise NotImplementedError
1039
+ return lr_scheduler
1040
+
1041
+ class LatentVisualDiffusion(LatentDiffusion):
1042
+ def __init__(self, img_cond_stage_config, image_proj_stage_config, freeze_embedder=True, image_proj_model_trainable=True, *args, **kwargs):
1043
+ super().__init__(*args, **kwargs)
1044
+ self.image_proj_model_trainable = image_proj_model_trainable
1045
+ self._init_embedder(img_cond_stage_config, freeze_embedder)
1046
+ self._init_img_ctx_projector(image_proj_stage_config, image_proj_model_trainable)
1047
+
1048
+ def _init_img_ctx_projector(self, config, trainable):
1049
+ self.image_proj_model = instantiate_from_config(config)
1050
+ if not trainable:
1051
+ self.image_proj_model.eval()
1052
+ self.image_proj_model.train = disabled_train
1053
+ for param in self.image_proj_model.parameters():
1054
+ param.requires_grad = False
1055
+
1056
+ def _init_embedder(self, config, freeze=True):
1057
+ self.embedder = instantiate_from_config(config)
1058
+ if freeze:
1059
+ self.embedder.eval()
1060
+ self.embedder.train = disabled_train
1061
+ for param in self.embedder.parameters():
1062
+ param.requires_grad = False
1063
+
1064
+ def shared_step(self, batch, random_uncond, **kwargs):
1065
+ x, c, fs = self.get_batch_input(batch, random_uncond=random_uncond, return_fs=True)
1066
+ kwargs.update({"fs": fs.long()})
1067
+ loss, loss_dict = self(x, c, **kwargs)
1068
+ return loss, loss_dict
1069
+
1070
+ def get_batch_input(self, batch, random_uncond, return_first_stage_outputs=False, return_original_cond=False, return_fs=False, return_cond_frame=False, return_original_input=False, **kwargs):
1071
+ ## x: b c t h w
1072
+ x = super().get_input(batch, self.first_stage_key)
1073
+ ## encode video frames x to z via a 2D encoder
1074
+ z = self.encode_first_stage(x)
1075
+
1076
+ ## get caption condition
1077
+ cond_input = batch[self.cond_stage_key]
1078
+
1079
+ if isinstance(cond_input, dict) or isinstance(cond_input, list):
1080
+ cond_emb = self.get_learned_conditioning(cond_input)
1081
+ else:
1082
+ cond_emb = self.get_learned_conditioning(cond_input.to(self.device))
1083
+
1084
+ cond = {}
1085
+ ## to support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
1086
+ if random_uncond:
1087
+ random_num = torch.rand(x.size(0), device=x.device)
1088
+ else:
1089
+ random_num = torch.ones(x.size(0), device=x.device) ## by doning so, we can get text embedding and complete img emb for inference
1090
+ prompt_mask = rearrange(random_num < 2 * self.uncond_prob, "n -> n 1 1")
1091
+ input_mask = 1 - rearrange((random_num >= self.uncond_prob).float() * (random_num < 3 * self.uncond_prob).float(), "n -> n 1 1 1")
1092
+
1093
+ null_prompt = self.get_learned_conditioning([""])
1094
+ prompt_imb = torch.where(prompt_mask, null_prompt, cond_emb.detach())
1095
+
1096
+ ## get conditioning frame
1097
+ cond_frame_index = 0
1098
+ if self.rand_cond_frame:
1099
+ cond_frame_index = random.randint(0, self.model.diffusion_model.temporal_length-1)
1100
+
1101
+ img = x[:,:,cond_frame_index,...]
1102
+ img = input_mask * img
1103
+ ## img: b c h w
1104
+ img_emb = self.embedder(img) ## b l c
1105
+ img_emb = self.image_proj_model(img_emb)
1106
+
1107
+ if self.model.conditioning_key == 'hybrid':
1108
+ ## simply repeat the cond_frame to match the seq_len of z
1109
+ img_cat_cond = z[:,:,cond_frame_index,:,:]
1110
+ img_cat_cond = img_cat_cond.unsqueeze(2)
1111
+ img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2])
1112
+
1113
+ cond["c_concat"] = [img_cat_cond] # b c t h w
1114
+ cond["c_crossattn"] = [torch.cat([prompt_imb, img_emb], dim=1)] ## concat in the seq_len dim
1115
+
1116
+ out = [z, cond]
1117
+ if return_first_stage_outputs:
1118
+ xrec = self.decode_first_stage(z)
1119
+ out.extend([xrec])
1120
+
1121
+ if return_original_cond:
1122
+ out.append(cond_input)
1123
+ if return_fs:
1124
+ if self.fps_condition_type == 'fs':
1125
+ fs = super().get_input(batch, 'frame_stride')
1126
+ elif self.fps_condition_type == 'fps':
1127
+ fs = super().get_input(batch, 'fps')
1128
+ out.append(fs)
1129
+ if return_cond_frame:
1130
+ out.append(x[:,:,cond_frame_index,...].unsqueeze(2))
1131
+ if return_original_input:
1132
+ out.append(x)
1133
+
1134
+ return out
1135
+
1136
+ @torch.no_grad()
1137
+ def log_images(self, batch, sample=True, ddim_steps=50, ddim_eta=1., plot_denoise_rows=False, \
1138
+ unconditional_guidance_scale=1.0, mask=None, **kwargs):
1139
+ """ log images for LatentVisualDiffusion """
1140
+ ##### sampled_img_num: control sampled imgae for logging, larger value may cause OOM
1141
+ sampled_img_num = 1
1142
+ for key in batch.keys():
1143
+ batch[key] = batch[key][:sampled_img_num]
1144
+
1145
+ ## TBD: currently, classifier_free_guidance sampling is only supported by DDIM
1146
+ use_ddim = ddim_steps is not None
1147
+ log = dict()
1148
+
1149
+ z, c, xrec, xc, fs, cond_x = self.get_batch_input(batch, random_uncond=False,
1150
+ return_first_stage_outputs=True,
1151
+ return_original_cond=True,
1152
+ return_fs=True,
1153
+ return_cond_frame=True)
1154
+
1155
+ N = xrec.shape[0]
1156
+ log["image_condition"] = cond_x
1157
+ log["reconst"] = xrec
1158
+ xc_with_fs = []
1159
+ for idx, content in enumerate(xc):
1160
+ xc_with_fs.append(content + '_fs=' + str(fs[idx].item()))
1161
+ log["condition"] = xc_with_fs
1162
+ kwargs.update({"fs": fs.long()})
1163
+
1164
+ c_cat = None
1165
+ if sample:
1166
+ # get uncond embedding for classifier-free guidance sampling
1167
+ if unconditional_guidance_scale != 1.0:
1168
+ if isinstance(c, dict):
1169
+ c_emb = c["c_crossattn"][0]
1170
+ if 'c_concat' in c.keys():
1171
+ c_cat = c["c_concat"][0]
1172
+ else:
1173
+ c_emb = c
1174
+
1175
+ if self.uncond_type == "empty_seq":
1176
+ prompts = N * [""]
1177
+ uc_prompt = self.get_learned_conditioning(prompts)
1178
+ elif self.uncond_type == "zero_embed":
1179
+ uc_prompt = torch.zeros_like(c_emb)
1180
+
1181
+ img = torch.zeros_like(xrec[:,:,0]) ## b c h w
1182
+ ## img: b c h w
1183
+ img_emb = self.embedder(img) ## b l c
1184
+ uc_img = self.image_proj_model(img_emb)
1185
+
1186
+ uc = torch.cat([uc_prompt, uc_img], dim=1)
1187
+ ## hybrid case
1188
+ if isinstance(c, dict):
1189
+ uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]}
1190
+ uc = uc_hybrid
1191
+ else:
1192
+ uc = None
1193
+
1194
+ with self.ema_scope("Plotting"):
1195
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1196
+ ddim_steps=ddim_steps,eta=ddim_eta,
1197
+ unconditional_guidance_scale=unconditional_guidance_scale,
1198
+ unconditional_conditioning=uc, x0=z, **kwargs)
1199
+ x_samples = self.decode_first_stage(samples)
1200
+ log["samples"] = x_samples
1201
+
1202
+ if plot_denoise_rows:
1203
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1204
+ log["denoise_row"] = denoise_grid
1205
+
1206
+ return log
1207
+
1208
+ def configure_optimizers(self):
1209
+ """ configure_optimizers for LatentDiffusion """
1210
+ lr = self.learning_rate
1211
+
1212
+ params = list(self.model.parameters())
1213
+ mainlogger.info(f"@Training [{len(params)}] Full Paramters.")
1214
+
1215
+ if self.cond_stage_trainable:
1216
+ params_cond_stage = [p for p in self.cond_stage_model.parameters() if p.requires_grad == True]
1217
+ mainlogger.info(f"@Training [{len(params_cond_stage)}] Paramters for Cond_stage_model.")
1218
+ params.extend(params_cond_stage)
1219
+
1220
+ if self.image_proj_model_trainable:
1221
+ mainlogger.info(f"@Training [{len(list(self.image_proj_model.parameters()))}] Paramters for Image_proj_model.")
1222
+ params.extend(list(self.image_proj_model.parameters()))
1223
+
1224
+ if self.learn_logvar:
1225
+ mainlogger.info('Diffusion model optimizing logvar')
1226
+ if isinstance(params[0], dict):
1227
+ params.append({"params": [self.logvar]})
1228
+ else:
1229
+ params.append(self.logvar)
1230
+
1231
+ ## optimizer
1232
+ optimizer = torch.optim.AdamW(params, lr=lr)
1233
+
1234
+ ## lr scheduler
1235
+ if self.use_scheduler:
1236
+ mainlogger.info("Setting up scheduler...")
1237
+ lr_scheduler = self.configure_schedulers(optimizer)
1238
+ return [optimizer], [lr_scheduler]
1239
+
1240
+ return optimizer
1241
+
1242
+
1243
+ class DiffusionWrapper(pl.LightningModule):
1244
+ def __init__(self, diff_model_config, conditioning_key):
1245
+ super().__init__()
1246
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1247
+ self.conditioning_key = conditioning_key
1248
+
1249
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
1250
+ c_adm=None, s=None, mask=None, **kwargs):
1251
+ # temporal_context = fps is foNone
1252
+ if self.conditioning_key is None:
1253
+ out = self.diffusion_model(x, t)
1254
+ elif self.conditioning_key == 'concat':
1255
+ xc = torch.cat([x] + c_concat, dim=1)
1256
+ out = self.diffusion_model(xc, t, **kwargs)
1257
+ elif self.conditioning_key == 'crossattn':
1258
+ cc = torch.cat(c_crossattn, 1)
1259
+ out = self.diffusion_model(x, t, context=cc, **kwargs)
1260
+ elif self.conditioning_key == 'hybrid':
1261
+ ## it is just right [b,c,t,h,w]: concatenate in channel dim
1262
+ xc = torch.cat([x] + c_concat, dim=1)
1263
+ cc = torch.cat(c_crossattn, 1)
1264
+ out = self.diffusion_model(xc, t, context=cc, **kwargs)
1265
+ elif self.conditioning_key == 'resblockcond':
1266
+ cc = c_crossattn[0]
1267
+ out = self.diffusion_model(x, t, context=cc)
1268
+ elif self.conditioning_key == 'adm':
1269
+ cc = c_crossattn[0]
1270
+ out = self.diffusion_model(x, t, y=cc)
1271
+ elif self.conditioning_key == 'hybrid-adm':
1272
+ assert c_adm is not None
1273
+ xc = torch.cat([x] + c_concat, dim=1)
1274
+ cc = torch.cat(c_crossattn, 1)
1275
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs)
1276
+ elif self.conditioning_key == 'hybrid-time':
1277
+ assert s is not None
1278
+ xc = torch.cat([x] + c_concat, dim=1)
1279
+ cc = torch.cat(c_crossattn, 1)
1280
+ out = self.diffusion_model(xc, t, context=cc, s=s)
1281
+ elif self.conditioning_key == 'concat-time-mask':
1282
+ # assert s is not None
1283
+ xc = torch.cat([x] + c_concat, dim=1)
1284
+ out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
1285
+ elif self.conditioning_key == 'concat-adm-mask':
1286
+ # assert s is not None
1287
+ if c_concat is not None:
1288
+ xc = torch.cat([x] + c_concat, dim=1)
1289
+ else:
1290
+ xc = x
1291
+ out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
1292
+ elif self.conditioning_key == 'hybrid-adm-mask':
1293
+ cc = torch.cat(c_crossattn, 1)
1294
+ if c_concat is not None:
1295
+ xc = torch.cat([x] + c_concat, dim=1)
1296
+ else:
1297
+ xc = x
1298
+ out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
1299
+ elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
1300
+ # assert s is not None
1301
+ assert c_adm is not None
1302
+ xc = torch.cat([x] + c_concat, dim=1)
1303
+ cc = torch.cat(c_crossattn, 1)
1304
+ out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
1305
+ elif self.conditioning_key == 'crossattn-adm':
1306
+ assert c_adm is not None
1307
+ cc = torch.cat(c_crossattn, 1)
1308
+ out = self.diffusion_model(x, t, context=cc, y=c_adm)
1309
+ else:
1310
+ raise NotImplementedError()
1311
+
1312
+ return out
lvdm/models/samplers/ddim.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from tqdm import tqdm
3
+ import torch
4
+ from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps, rescale_noise_cfg
5
+ from lvdm.common import noise_like
6
+ from lvdm.common import extract_into_tensor
7
+ import copy
8
+
9
+
10
+ class DDIMSampler(object):
11
+ def __init__(self, model, schedule="linear", **kwargs):
12
+ super().__init__()
13
+ self.model = model
14
+ self.ddpm_num_timesteps = model.num_timesteps
15
+ self.schedule = schedule
16
+ self.counter = 0
17
+
18
+ def register_buffer(self, name, attr):
19
+ if type(attr) == torch.Tensor:
20
+ if attr.device != torch.device("cuda"):
21
+ attr = attr.to(torch.device("cuda"))
22
+ setattr(self, name, attr)
23
+
24
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
25
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
26
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
27
+ alphas_cumprod = self.model.alphas_cumprod
28
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
29
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
30
+
31
+ if self.model.use_dynamic_rescale:
32
+ self.ddim_scale_arr = self.model.scale_arr[self.ddim_timesteps]
33
+ self.ddim_scale_arr_prev = torch.cat([self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]])
34
+
35
+ self.register_buffer('betas', to_torch(self.model.betas))
36
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
37
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
38
+
39
+ # calculations for diffusion q(x_t | x_{t-1}) and others
40
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
41
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
44
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
45
+
46
+ # ddim sampling parameters
47
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
48
+ ddim_timesteps=self.ddim_timesteps,
49
+ eta=ddim_eta,verbose=verbose)
50
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
51
+ self.register_buffer('ddim_alphas', ddim_alphas)
52
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
53
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
54
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
55
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
56
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
57
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
58
+
59
+ @torch.no_grad()
60
+ def sample(self,
61
+ S,
62
+ batch_size,
63
+ shape,
64
+ conditioning=None,
65
+ callback=None,
66
+ normals_sequence=None,
67
+ img_callback=None,
68
+ quantize_x0=False,
69
+ eta=0.,
70
+ mask=None,
71
+ x0=None,
72
+ temperature=1.,
73
+ noise_dropout=0.,
74
+ score_corrector=None,
75
+ corrector_kwargs=None,
76
+ verbose=True,
77
+ schedule_verbose=False,
78
+ x_T=None,
79
+ log_every_t=100,
80
+ unconditional_guidance_scale=1.,
81
+ unconditional_conditioning=None,
82
+ precision=None,
83
+ fs=None,
84
+ timestep_spacing='uniform', #uniform_trailing for starting from last timestep
85
+ guidance_rescale=0.0,
86
+ **kwargs
87
+ ):
88
+
89
+ # check condition bs
90
+ if conditioning is not None:
91
+ if isinstance(conditioning, dict):
92
+ try:
93
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
94
+ except:
95
+ cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
96
+
97
+ if cbs != batch_size:
98
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
99
+ else:
100
+ if conditioning.shape[0] != batch_size:
101
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
102
+
103
+ self.make_schedule(ddim_num_steps=S, ddim_discretize=timestep_spacing, ddim_eta=eta, verbose=schedule_verbose)
104
+
105
+ # make shape
106
+ if len(shape) == 3:
107
+ C, H, W = shape
108
+ size = (batch_size, C, H, W)
109
+ elif len(shape) == 4:
110
+ C, T, H, W = shape
111
+ size = (batch_size, C, T, H, W)
112
+
113
+ samples, intermediates = self.ddim_sampling(conditioning, size,
114
+ callback=callback,
115
+ img_callback=img_callback,
116
+ quantize_denoised=quantize_x0,
117
+ mask=mask, x0=x0,
118
+ ddim_use_original_steps=False,
119
+ noise_dropout=noise_dropout,
120
+ temperature=temperature,
121
+ score_corrector=score_corrector,
122
+ corrector_kwargs=corrector_kwargs,
123
+ x_T=x_T,
124
+ log_every_t=log_every_t,
125
+ unconditional_guidance_scale=unconditional_guidance_scale,
126
+ unconditional_conditioning=unconditional_conditioning,
127
+ verbose=verbose,
128
+ precision=precision,
129
+ fs=fs,
130
+ guidance_rescale=guidance_rescale,
131
+ **kwargs)
132
+ return samples, intermediates
133
+
134
+ @torch.no_grad()
135
+ def ddim_sampling(self, cond, shape,
136
+ x_T=None, ddim_use_original_steps=False,
137
+ callback=None, timesteps=None, quantize_denoised=False,
138
+ mask=None, x0=None, img_callback=None, log_every_t=100,
139
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
140
+ unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,precision=None,fs=None,guidance_rescale=0.0,
141
+ **kwargs):
142
+ device = self.model.betas.device
143
+ b = shape[0]
144
+ if x_T is None:
145
+ img = torch.randn(shape, device=device)
146
+ else:
147
+ img = x_T
148
+ if precision is not None:
149
+ if precision == 16:
150
+ img = img.to(dtype=torch.float16)
151
+
152
+ if timesteps is None:
153
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
154
+ elif timesteps is not None and not ddim_use_original_steps:
155
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
156
+ timesteps = self.ddim_timesteps[:subset_end]
157
+
158
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
159
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
160
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
161
+ if verbose:
162
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
163
+ else:
164
+ iterator = time_range
165
+
166
+ clean_cond = kwargs.pop("clean_cond", False)
167
+
168
+ # cond_copy, unconditional_conditioning_copy = copy.deepcopy(cond), copy.deepcopy(unconditional_conditioning)
169
+ for i, step in enumerate(iterator):
170
+ index = total_steps - i - 1
171
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
172
+
173
+ ## use mask to blend noised original latent (img_orig) & new sampled latent (img)
174
+ if mask is not None:
175
+ assert x0 is not None
176
+ if clean_cond:
177
+ img_orig = x0
178
+ else:
179
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? <ddim inversion>
180
+ img = img_orig * mask + (1. - mask) * img # keep original & modify use img
181
+
182
+
183
+
184
+
185
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
186
+ quantize_denoised=quantize_denoised, temperature=temperature,
187
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
188
+ corrector_kwargs=corrector_kwargs,
189
+ unconditional_guidance_scale=unconditional_guidance_scale,
190
+ unconditional_conditioning=unconditional_conditioning,
191
+ mask=mask,x0=x0,fs=fs,guidance_rescale=guidance_rescale,
192
+ **kwargs)
193
+
194
+
195
+ img, pred_x0 = outs
196
+ if callback: callback(i)
197
+ if img_callback: img_callback(pred_x0, i)
198
+
199
+ if index % log_every_t == 0 or index == total_steps - 1:
200
+ intermediates['x_inter'].append(img)
201
+ intermediates['pred_x0'].append(pred_x0)
202
+
203
+ return img, intermediates
204
+
205
+ @torch.no_grad()
206
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
207
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
208
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
209
+ uc_type=None, conditional_guidance_scale_temporal=None,mask=None,x0=None,guidance_rescale=0.0,**kwargs):
210
+ b, *_, device = *x.shape, x.device
211
+ if x.dim() == 5:
212
+ is_video = True
213
+ else:
214
+ is_video = False
215
+
216
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
217
+ model_output = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
218
+ else:
219
+ ### do_classifier_free_guidance
220
+ if isinstance(c, torch.Tensor) or isinstance(c, dict):
221
+ e_t_cond = self.model.apply_model(x, t, c, **kwargs)
222
+ e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
223
+ else:
224
+ raise NotImplementedError
225
+
226
+ model_output = e_t_uncond + unconditional_guidance_scale * (e_t_cond - e_t_uncond)
227
+
228
+ if guidance_rescale > 0.0:
229
+ model_output = rescale_noise_cfg(model_output, e_t_cond, guidance_rescale=guidance_rescale)
230
+
231
+ if self.model.parameterization == "v":
232
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
233
+ else:
234
+ e_t = model_output
235
+
236
+ if score_corrector is not None:
237
+ assert self.model.parameterization == "eps", 'not implemented'
238
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
239
+
240
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
241
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
242
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
243
+ # sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
244
+ sigmas = self.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
245
+ # select parameters corresponding to the currently considered timestep
246
+
247
+ if is_video:
248
+ size = (b, 1, 1, 1, 1)
249
+ else:
250
+ size = (b, 1, 1, 1)
251
+ a_t = torch.full(size, alphas[index], device=device)
252
+ a_prev = torch.full(size, alphas_prev[index], device=device)
253
+ sigma_t = torch.full(size, sigmas[index], device=device)
254
+ sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
255
+
256
+ # current prediction for x_0
257
+ if self.model.parameterization != "v":
258
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
259
+ else:
260
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
261
+
262
+ if self.model.use_dynamic_rescale:
263
+ scale_t = torch.full(size, self.ddim_scale_arr[index], device=device)
264
+ prev_scale_t = torch.full(size, self.ddim_scale_arr_prev[index], device=device)
265
+ rescale = (prev_scale_t / scale_t)
266
+ pred_x0 *= rescale
267
+
268
+ if quantize_denoised:
269
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
270
+ # direction pointing to x_t
271
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
272
+
273
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
274
+ if noise_dropout > 0.:
275
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
276
+
277
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
278
+
279
+ return x_prev, pred_x0
280
+
281
+ @torch.no_grad()
282
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
283
+ use_original_steps=False, callback=None):
284
+
285
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
286
+ timesteps = timesteps[:t_start]
287
+
288
+ time_range = np.flip(timesteps)
289
+ total_steps = timesteps.shape[0]
290
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
291
+
292
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
293
+ x_dec = x_latent
294
+ for i, step in enumerate(iterator):
295
+ index = total_steps - i - 1
296
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
297
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
298
+ unconditional_guidance_scale=unconditional_guidance_scale,
299
+ unconditional_conditioning=unconditional_conditioning)
300
+ if callback: callback(i)
301
+ return x_dec
302
+
303
+ @torch.no_grad()
304
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
305
+ # fast, but does not allow for exact reconstruction
306
+ # t serves as an index to gather the correct alphas
307
+ if use_original_steps:
308
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
309
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
310
+ else:
311
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
312
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
313
+
314
+ if noise is None:
315
+ noise = torch.randn_like(x0)
316
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
317
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
lvdm/models/samplers/ddim_multiplecond.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from tqdm import tqdm
3
+ import torch
4
+ from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps, rescale_noise_cfg
5
+ from lvdm.common import noise_like
6
+ from lvdm.common import extract_into_tensor
7
+ import copy
8
+
9
+
10
+ class DDIMSampler(object):
11
+ def __init__(self, model, schedule="linear", **kwargs):
12
+ super().__init__()
13
+ self.model = model
14
+ self.ddpm_num_timesteps = model.num_timesteps
15
+ self.schedule = schedule
16
+ self.counter = 0
17
+
18
+ def register_buffer(self, name, attr):
19
+ if type(attr) == torch.Tensor:
20
+ if attr.device != torch.device("cuda"):
21
+ attr = attr.to(torch.device("cuda"))
22
+ setattr(self, name, attr)
23
+
24
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
25
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
26
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
27
+ alphas_cumprod = self.model.alphas_cumprod
28
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
29
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
30
+
31
+ if self.model.use_dynamic_rescale:
32
+ self.ddim_scale_arr = self.model.scale_arr[self.ddim_timesteps]
33
+ self.ddim_scale_arr_prev = torch.cat([self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]])
34
+
35
+ self.register_buffer('betas', to_torch(self.model.betas))
36
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
37
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
38
+
39
+ # calculations for diffusion q(x_t | x_{t-1}) and others
40
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
41
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
44
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
45
+
46
+ # ddim sampling parameters
47
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
48
+ ddim_timesteps=self.ddim_timesteps,
49
+ eta=ddim_eta,verbose=verbose)
50
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
51
+ self.register_buffer('ddim_alphas', ddim_alphas)
52
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
53
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
54
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
55
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
56
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
57
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
58
+
59
+ @torch.no_grad()
60
+ def sample(self,
61
+ S,
62
+ batch_size,
63
+ shape,
64
+ conditioning=None,
65
+ callback=None,
66
+ normals_sequence=None,
67
+ img_callback=None,
68
+ quantize_x0=False,
69
+ eta=0.,
70
+ mask=None,
71
+ x0=None,
72
+ temperature=1.,
73
+ noise_dropout=0.,
74
+ score_corrector=None,
75
+ corrector_kwargs=None,
76
+ verbose=True,
77
+ schedule_verbose=False,
78
+ x_T=None,
79
+ log_every_t=100,
80
+ unconditional_guidance_scale=1.,
81
+ unconditional_conditioning=None,
82
+ precision=None,
83
+ fs=None,
84
+ timestep_spacing='uniform', #uniform_trailing for starting from last timestep
85
+ guidance_rescale=0.0,
86
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
87
+ **kwargs
88
+ ):
89
+
90
+ # check condition bs
91
+ if conditioning is not None:
92
+ if isinstance(conditioning, dict):
93
+ try:
94
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
95
+ except:
96
+ cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
97
+
98
+ if cbs != batch_size:
99
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
100
+ else:
101
+ if conditioning.shape[0] != batch_size:
102
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
103
+
104
+ # print('==> timestep_spacing: ', timestep_spacing, guidance_rescale)
105
+ self.make_schedule(ddim_num_steps=S, ddim_discretize=timestep_spacing, ddim_eta=eta, verbose=schedule_verbose)
106
+
107
+ # make shape
108
+ if len(shape) == 3:
109
+ C, H, W = shape
110
+ size = (batch_size, C, H, W)
111
+ elif len(shape) == 4:
112
+ C, T, H, W = shape
113
+ size = (batch_size, C, T, H, W)
114
+ # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
115
+
116
+ samples, intermediates = self.ddim_sampling(conditioning, size,
117
+ callback=callback,
118
+ img_callback=img_callback,
119
+ quantize_denoised=quantize_x0,
120
+ mask=mask, x0=x0,
121
+ ddim_use_original_steps=False,
122
+ noise_dropout=noise_dropout,
123
+ temperature=temperature,
124
+ score_corrector=score_corrector,
125
+ corrector_kwargs=corrector_kwargs,
126
+ x_T=x_T,
127
+ log_every_t=log_every_t,
128
+ unconditional_guidance_scale=unconditional_guidance_scale,
129
+ unconditional_conditioning=unconditional_conditioning,
130
+ verbose=verbose,
131
+ precision=precision,
132
+ fs=fs,
133
+ guidance_rescale=guidance_rescale,
134
+ **kwargs)
135
+ return samples, intermediates
136
+
137
+ @torch.no_grad()
138
+ def ddim_sampling(self, cond, shape,
139
+ x_T=None, ddim_use_original_steps=False,
140
+ callback=None, timesteps=None, quantize_denoised=False,
141
+ mask=None, x0=None, img_callback=None, log_every_t=100,
142
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
143
+ unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,precision=None,fs=None,guidance_rescale=0.0,
144
+ **kwargs):
145
+ device = self.model.betas.device
146
+ b = shape[0]
147
+ if x_T is None:
148
+ img = torch.randn(shape, device=device)
149
+ else:
150
+ img = x_T
151
+ if precision is not None:
152
+ if precision == 16:
153
+ img = img.to(dtype=torch.float16)
154
+
155
+
156
+ if timesteps is None:
157
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
158
+ elif timesteps is not None and not ddim_use_original_steps:
159
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
160
+ timesteps = self.ddim_timesteps[:subset_end]
161
+
162
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
163
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
164
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
165
+ if verbose:
166
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
167
+ else:
168
+ iterator = time_range
169
+
170
+ clean_cond = kwargs.pop("clean_cond", False)
171
+
172
+ # cond_copy, unconditional_conditioning_copy = copy.deepcopy(cond), copy.deepcopy(unconditional_conditioning)
173
+ for i, step in enumerate(iterator):
174
+ index = total_steps - i - 1
175
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
176
+
177
+ ## use mask to blend noised original latent (img_orig) & new sampled latent (img)
178
+ if mask is not None:
179
+ assert x0 is not None
180
+ if clean_cond:
181
+ img_orig = x0
182
+ else:
183
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? <ddim inversion>
184
+ img = img_orig * mask + (1. - mask) * img # keep original & modify use img
185
+
186
+
187
+
188
+
189
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
190
+ quantize_denoised=quantize_denoised, temperature=temperature,
191
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
192
+ corrector_kwargs=corrector_kwargs,
193
+ unconditional_guidance_scale=unconditional_guidance_scale,
194
+ unconditional_conditioning=unconditional_conditioning,
195
+ mask=mask,x0=x0,fs=fs,guidance_rescale=guidance_rescale,
196
+ **kwargs)
197
+
198
+
199
+
200
+ img, pred_x0 = outs
201
+ if callback: callback(i)
202
+ if img_callback: img_callback(pred_x0, i)
203
+
204
+ if index % log_every_t == 0 or index == total_steps - 1:
205
+ intermediates['x_inter'].append(img)
206
+ intermediates['pred_x0'].append(pred_x0)
207
+
208
+ return img, intermediates
209
+
210
+ @torch.no_grad()
211
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
212
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
213
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
214
+ uc_type=None, cfg_img=None,mask=None,x0=None,guidance_rescale=0.0, **kwargs):
215
+ b, *_, device = *x.shape, x.device
216
+ if x.dim() == 5:
217
+ is_video = True
218
+ else:
219
+ is_video = False
220
+ if cfg_img is None:
221
+ cfg_img = unconditional_guidance_scale
222
+
223
+ unconditional_conditioning_img_nonetext = kwargs['unconditional_conditioning_img_nonetext']
224
+
225
+
226
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
227
+ model_output = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
228
+ else:
229
+ ### with unconditional condition
230
+ e_t_cond = self.model.apply_model(x, t, c, **kwargs)
231
+ e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
232
+ e_t_uncond_img = self.model.apply_model(x, t, unconditional_conditioning_img_nonetext, **kwargs)
233
+ # text cfg
234
+ model_output = e_t_uncond + cfg_img * (e_t_uncond_img - e_t_uncond) + unconditional_guidance_scale * (e_t_cond - e_t_uncond_img)
235
+ if guidance_rescale > 0.0:
236
+ model_output = rescale_noise_cfg(model_output, e_t_cond, guidance_rescale=guidance_rescale)
237
+
238
+ if self.model.parameterization == "v":
239
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
240
+ else:
241
+ e_t = model_output
242
+
243
+ if score_corrector is not None:
244
+ assert self.model.parameterization == "eps", 'not implemented'
245
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
246
+
247
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
248
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
249
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
250
+ sigmas = self.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
251
+ # select parameters corresponding to the currently considered timestep
252
+
253
+ if is_video:
254
+ size = (b, 1, 1, 1, 1)
255
+ else:
256
+ size = (b, 1, 1, 1)
257
+ a_t = torch.full(size, alphas[index], device=device)
258
+ a_prev = torch.full(size, alphas_prev[index], device=device)
259
+ sigma_t = torch.full(size, sigmas[index], device=device)
260
+ sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
261
+
262
+ # current prediction for x_0
263
+ if self.model.parameterization != "v":
264
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
265
+ else:
266
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
267
+
268
+ if self.model.use_dynamic_rescale:
269
+ scale_t = torch.full(size, self.ddim_scale_arr[index], device=device)
270
+ prev_scale_t = torch.full(size, self.ddim_scale_arr_prev[index], device=device)
271
+ rescale = (prev_scale_t / scale_t)
272
+ pred_x0 *= rescale
273
+
274
+ if quantize_denoised:
275
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
276
+ # direction pointing to x_t
277
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
278
+
279
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
280
+ if noise_dropout > 0.:
281
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
282
+
283
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
284
+
285
+ return x_prev, pred_x0
286
+
287
+ @torch.no_grad()
288
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
289
+ use_original_steps=False, callback=None):
290
+
291
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
292
+ timesteps = timesteps[:t_start]
293
+
294
+ time_range = np.flip(timesteps)
295
+ total_steps = timesteps.shape[0]
296
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
297
+
298
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
299
+ x_dec = x_latent
300
+ for i, step in enumerate(iterator):
301
+ index = total_steps - i - 1
302
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
303
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
304
+ unconditional_guidance_scale=unconditional_guidance_scale,
305
+ unconditional_conditioning=unconditional_conditioning)
306
+ if callback: callback(i)
307
+ return x_dec
308
+
309
+ @torch.no_grad()
310
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
311
+ # fast, but does not allow for exact reconstruction
312
+ # t serves as an index to gather the correct alphas
313
+ if use_original_steps:
314
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
315
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
316
+ else:
317
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
318
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
319
+
320
+ if noise is None:
321
+ noise = torch.randn_like(x0)
322
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
323
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
lvdm/models/utils_diffusion.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from einops import repeat
6
+
7
+
8
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
9
+ """
10
+ Create sinusoidal timestep embeddings.
11
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
12
+ These may be fractional.
13
+ :param dim: the dimension of the output.
14
+ :param max_period: controls the minimum frequency of the embeddings.
15
+ :return: an [N x dim] Tensor of positional embeddings.
16
+ """
17
+ if not repeat_only:
18
+ half = dim // 2
19
+ freqs = torch.exp(
20
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
21
+ ).to(device=timesteps.device)
22
+ args = timesteps[:, None].float() * freqs[None]
23
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
24
+ if dim % 2:
25
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
26
+ else:
27
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
28
+ return embedding
29
+
30
+
31
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
32
+ if schedule == "linear":
33
+ betas = (
34
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
35
+ )
36
+
37
+ elif schedule == "cosine":
38
+ timesteps = (
39
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
40
+ )
41
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
42
+ alphas = torch.cos(alphas).pow(2)
43
+ alphas = alphas / alphas[0]
44
+ betas = 1 - alphas[1:] / alphas[:-1]
45
+ betas = np.clip(betas, a_min=0, a_max=0.999)
46
+
47
+ elif schedule == "sqrt_linear":
48
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
49
+ elif schedule == "sqrt":
50
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
51
+ else:
52
+ raise ValueError(f"schedule '{schedule}' unknown.")
53
+ return betas.numpy()
54
+
55
+
56
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
57
+ if ddim_discr_method == 'uniform':
58
+ c = num_ddpm_timesteps // num_ddim_timesteps
59
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
60
+ steps_out = ddim_timesteps + 1
61
+ elif ddim_discr_method == 'uniform_trailing':
62
+ c = num_ddpm_timesteps / num_ddim_timesteps
63
+ ddim_timesteps = np.flip(np.round(np.arange(num_ddpm_timesteps, 0, -c))).astype(np.int64)
64
+ steps_out = ddim_timesteps - 1
65
+ elif ddim_discr_method == 'quad':
66
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
67
+ steps_out = ddim_timesteps + 1
68
+ else:
69
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
70
+
71
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
72
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
73
+ # steps_out = ddim_timesteps + 1
74
+ if verbose:
75
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
76
+ return steps_out
77
+
78
+
79
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
80
+ # select alphas for computing the variance schedule
81
+ # print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
82
+ alphas = alphacums[ddim_timesteps]
83
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
84
+
85
+ # according the formula provided in https://arxiv.org/abs/2010.02502
86
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
87
+ if verbose:
88
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
89
+ print(f'For the chosen value of eta, which is {eta}, '
90
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
91
+ return sigmas, alphas, alphas_prev
92
+
93
+
94
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
95
+ """
96
+ Create a beta schedule that discretizes the given alpha_t_bar function,
97
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
98
+ :param num_diffusion_timesteps: the number of betas to produce.
99
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
100
+ produces the cumulative product of (1-beta) up to that
101
+ part of the diffusion process.
102
+ :param max_beta: the maximum beta to use; use values lower than 1 to
103
+ prevent singularities.
104
+ """
105
+ betas = []
106
+ for i in range(num_diffusion_timesteps):
107
+ t1 = i / num_diffusion_timesteps
108
+ t2 = (i + 1) / num_diffusion_timesteps
109
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
110
+ return np.array(betas)
111
+
112
+ def rescale_zero_terminal_snr(betas):
113
+ """
114
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
115
+
116
+ Args:
117
+ betas (`numpy.ndarray`):
118
+ the betas that the scheduler is being initialized with.
119
+
120
+ Returns:
121
+ `numpy.ndarray`: rescaled betas with zero terminal SNR
122
+ """
123
+ # Convert betas to alphas_bar_sqrt
124
+ alphas = 1.0 - betas
125
+ alphas_cumprod = np.cumprod(alphas, axis=0)
126
+ alphas_bar_sqrt = np.sqrt(alphas_cumprod)
127
+
128
+ # Store old values.
129
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].copy()
130
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].copy()
131
+
132
+ # Shift so the last timestep is zero.
133
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
134
+
135
+ # Scale so the first timestep is back to the old value.
136
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
137
+
138
+ # Convert alphas_bar_sqrt to betas
139
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
140
+ alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
141
+ alphas = np.concatenate([alphas_bar[0:1], alphas])
142
+ betas = 1 - alphas
143
+
144
+ return betas
145
+
146
+
147
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
148
+ """
149
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
150
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
151
+ """
152
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
153
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
154
+ # rescale the results from guidance (fixes overexposure)
155
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
156
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
157
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
158
+ return noise_cfg
lvdm/modules/attention.py ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn, einsum
3
+ import torch.nn.functional as F
4
+ from einops import rearrange, repeat
5
+ from functools import partial
6
+ try:
7
+ import xformers
8
+ import xformers.ops
9
+ XFORMERS_IS_AVAILBLE = True
10
+ except:
11
+ XFORMERS_IS_AVAILBLE = False
12
+ from lvdm.common import (
13
+ checkpoint,
14
+ exists,
15
+ default,
16
+ )
17
+ from lvdm.basics import zero_module
18
+
19
+
20
+ class RelativePosition(nn.Module):
21
+ """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
22
+
23
+ def __init__(self, num_units, max_relative_position):
24
+ super().__init__()
25
+ self.num_units = num_units
26
+ self.max_relative_position = max_relative_position
27
+ self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
28
+ nn.init.xavier_uniform_(self.embeddings_table)
29
+
30
+ def forward(self, length_q, length_k):
31
+ device = self.embeddings_table.device
32
+ range_vec_q = torch.arange(length_q, device=device)
33
+ range_vec_k = torch.arange(length_k, device=device)
34
+ distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
35
+ distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
36
+ final_mat = distance_mat_clipped + self.max_relative_position
37
+ final_mat = final_mat.long()
38
+ embeddings = self.embeddings_table[final_mat]
39
+ return embeddings
40
+
41
+
42
+ class CrossAttention(nn.Module):
43
+
44
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
45
+ relative_position=False, temporal_length=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77):
46
+ super().__init__()
47
+ inner_dim = dim_head * heads
48
+ context_dim = default(context_dim, query_dim)
49
+
50
+ self.scale = dim_head**-0.5
51
+ self.heads = heads
52
+ self.dim_head = dim_head
53
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
54
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
55
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
56
+
57
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
58
+
59
+ self.relative_position = relative_position
60
+ if self.relative_position:
61
+ assert(temporal_length is not None)
62
+ self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
63
+ self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
64
+ else:
65
+ ## only used for spatial attention, while NOT for temporal attention
66
+ if XFORMERS_IS_AVAILBLE and temporal_length is None:
67
+ self.forward = self.efficient_forward
68
+
69
+ self.video_length = video_length
70
+ self.image_cross_attention = image_cross_attention
71
+ self.image_cross_attention_scale = image_cross_attention_scale
72
+ self.text_context_len = text_context_len
73
+ self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
74
+ if self.image_cross_attention:
75
+ self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
76
+ self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
77
+ if image_cross_attention_scale_learnable:
78
+ self.register_parameter('alpha', nn.Parameter(torch.tensor(0.)) )
79
+
80
+
81
+ def forward(self, x, context=None, mask=None):
82
+ spatial_self_attn = (context is None)
83
+ k_ip, v_ip, out_ip = None, None, None
84
+
85
+ h = self.heads
86
+ q = self.to_q(x)
87
+ context = default(context, x)
88
+
89
+ if self.image_cross_attention and not spatial_self_attn:
90
+ context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
91
+ k = self.to_k(context)
92
+ v = self.to_v(context)
93
+ k_ip = self.to_k_ip(context_image)
94
+ v_ip = self.to_v_ip(context_image)
95
+ else:
96
+ if not spatial_self_attn:
97
+ context = context[:,:self.text_context_len,:]
98
+ k = self.to_k(context)
99
+ v = self.to_v(context)
100
+
101
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
102
+
103
+ sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
104
+ if self.relative_position:
105
+ len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
106
+ k2 = self.relative_position_k(len_q, len_k)
107
+ sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
108
+ sim += sim2
109
+ del k
110
+
111
+ if exists(mask):
112
+ ## feasible for causal attention mask only
113
+ max_neg_value = -torch.finfo(sim.dtype).max
114
+ mask = repeat(mask, 'b i j -> (b h) i j', h=h)
115
+ sim.masked_fill_(~(mask>0.5), max_neg_value)
116
+
117
+ # attention, what we cannot get enough of
118
+ sim = sim.softmax(dim=-1)
119
+
120
+ out = torch.einsum('b i j, b j d -> b i d', sim, v)
121
+ if self.relative_position:
122
+ v2 = self.relative_position_v(len_q, len_v)
123
+ out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
124
+ out += out2
125
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
126
+
127
+
128
+ ## for image cross-attention
129
+ if k_ip is not None:
130
+ k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip))
131
+ sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale
132
+ del k_ip
133
+ sim_ip = sim_ip.softmax(dim=-1)
134
+ out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip)
135
+ out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h)
136
+
137
+
138
+ if out_ip is not None:
139
+ if self.image_cross_attention_scale_learnable:
140
+ out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1)
141
+ else:
142
+ out = out + self.image_cross_attention_scale * out_ip
143
+
144
+ return self.to_out(out)
145
+
146
+ def efficient_forward(self, x, context=None, mask=None):
147
+ spatial_self_attn = (context is None)
148
+ k_ip, v_ip, out_ip = None, None, None
149
+
150
+ q = self.to_q(x)
151
+ context = default(context, x)
152
+
153
+ if self.image_cross_attention and not spatial_self_attn:
154
+ context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
155
+ k = self.to_k(context)
156
+ v = self.to_v(context)
157
+ k_ip = self.to_k_ip(context_image)
158
+ v_ip = self.to_v_ip(context_image)
159
+ else:
160
+ if not spatial_self_attn:
161
+ context = context[:,:self.text_context_len,:]
162
+ k = self.to_k(context)
163
+ v = self.to_v(context)
164
+
165
+ b, _, _ = q.shape
166
+ q, k, v = map(
167
+ lambda t: t.unsqueeze(3)
168
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
169
+ .permute(0, 2, 1, 3)
170
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
171
+ .contiguous(),
172
+ (q, k, v),
173
+ )
174
+ # actually compute the attention, what we cannot get enough of
175
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
176
+
177
+ ## for image cross-attention
178
+ if k_ip is not None:
179
+ k_ip, v_ip = map(
180
+ lambda t: t.unsqueeze(3)
181
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
182
+ .permute(0, 2, 1, 3)
183
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
184
+ .contiguous(),
185
+ (k_ip, v_ip),
186
+ )
187
+ out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None)
188
+ out_ip = (
189
+ out_ip.unsqueeze(0)
190
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
191
+ .permute(0, 2, 1, 3)
192
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
193
+ )
194
+
195
+ if exists(mask):
196
+ raise NotImplementedError
197
+ out = (
198
+ out.unsqueeze(0)
199
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
200
+ .permute(0, 2, 1, 3)
201
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
202
+ )
203
+ if out_ip is not None:
204
+ if self.image_cross_attention_scale_learnable:
205
+ out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1)
206
+ else:
207
+ out = out + self.image_cross_attention_scale * out_ip
208
+
209
+ return self.to_out(out)
210
+
211
+
212
+ class BasicTransformerBlock(nn.Module):
213
+
214
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
215
+ disable_self_attn=False, attention_cls=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77):
216
+ super().__init__()
217
+ attn_cls = CrossAttention if attention_cls is None else attention_cls
218
+ self.disable_self_attn = disable_self_attn
219
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
220
+ context_dim=context_dim if self.disable_self_attn else None)
221
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
222
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, video_length=video_length, image_cross_attention=image_cross_attention, image_cross_attention_scale=image_cross_attention_scale, image_cross_attention_scale_learnable=image_cross_attention_scale_learnable,text_context_len=text_context_len)
223
+ self.image_cross_attention = image_cross_attention
224
+
225
+ self.norm1 = nn.LayerNorm(dim)
226
+ self.norm2 = nn.LayerNorm(dim)
227
+ self.norm3 = nn.LayerNorm(dim)
228
+ self.checkpoint = checkpoint
229
+
230
+
231
+ def forward(self, x, context=None, mask=None, **kwargs):
232
+ ## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
233
+ input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
234
+ if context is not None:
235
+ input_tuple = (x, context)
236
+ if mask is not None:
237
+ forward_mask = partial(self._forward, mask=mask)
238
+ return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
239
+ return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
240
+
241
+
242
+ def _forward(self, x, context=None, mask=None):
243
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
244
+ x = self.attn2(self.norm2(x), context=context, mask=mask) + x
245
+ x = self.ff(self.norm3(x)) + x
246
+ return x
247
+
248
+
249
+ class SpatialTransformer(nn.Module):
250
+ """
251
+ Transformer block for image-like data in spatial axis.
252
+ First, project the input (aka embedding)
253
+ and reshape to b, t, d.
254
+ Then apply standard transformer action.
255
+ Finally, reshape to image
256
+ NEW: use_linear for more efficiency instead of the 1x1 convs
257
+ """
258
+
259
+ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
260
+ use_checkpoint=True, disable_self_attn=False, use_linear=False, video_length=None,
261
+ image_cross_attention=False, image_cross_attention_scale_learnable=False):
262
+ super().__init__()
263
+ self.in_channels = in_channels
264
+ inner_dim = n_heads * d_head
265
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
266
+ if not use_linear:
267
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
268
+ else:
269
+ self.proj_in = nn.Linear(in_channels, inner_dim)
270
+
271
+ attention_cls = None
272
+ self.transformer_blocks = nn.ModuleList([
273
+ BasicTransformerBlock(
274
+ inner_dim,
275
+ n_heads,
276
+ d_head,
277
+ dropout=dropout,
278
+ context_dim=context_dim,
279
+ disable_self_attn=disable_self_attn,
280
+ checkpoint=use_checkpoint,
281
+ attention_cls=attention_cls,
282
+ video_length=video_length,
283
+ image_cross_attention=image_cross_attention,
284
+ image_cross_attention_scale_learnable=image_cross_attention_scale_learnable,
285
+ ) for d in range(depth)
286
+ ])
287
+ if not use_linear:
288
+ self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
289
+ else:
290
+ self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
291
+ self.use_linear = use_linear
292
+
293
+
294
+ def forward(self, x, context=None, **kwargs):
295
+ b, c, h, w = x.shape
296
+ x_in = x
297
+ x = self.norm(x)
298
+ if not self.use_linear:
299
+ x = self.proj_in(x)
300
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
301
+ if self.use_linear:
302
+ x = self.proj_in(x)
303
+ for i, block in enumerate(self.transformer_blocks):
304
+ x = block(x, context=context, **kwargs)
305
+ if self.use_linear:
306
+ x = self.proj_out(x)
307
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
308
+ if not self.use_linear:
309
+ x = self.proj_out(x)
310
+ return x + x_in
311
+
312
+
313
+ class TemporalTransformer(nn.Module):
314
+ """
315
+ Transformer block for image-like data in temporal axis.
316
+ First, reshape to b, t, d.
317
+ Then apply standard transformer action.
318
+ Finally, reshape to image
319
+ """
320
+ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
321
+ use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False, causal_block_size=1,
322
+ relative_position=False, temporal_length=None):
323
+ super().__init__()
324
+ self.only_self_att = only_self_att
325
+ self.relative_position = relative_position
326
+ self.causal_attention = causal_attention
327
+ self.causal_block_size = causal_block_size
328
+
329
+ self.in_channels = in_channels
330
+ inner_dim = n_heads * d_head
331
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
332
+ self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
333
+ if not use_linear:
334
+ self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
335
+ else:
336
+ self.proj_in = nn.Linear(in_channels, inner_dim)
337
+
338
+ if relative_position:
339
+ assert(temporal_length is not None)
340
+ attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
341
+ else:
342
+ attention_cls = partial(CrossAttention, temporal_length=temporal_length)
343
+ if self.causal_attention:
344
+ assert(temporal_length is not None)
345
+ self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
346
+
347
+ if self.only_self_att:
348
+ context_dim = None
349
+ self.transformer_blocks = nn.ModuleList([
350
+ BasicTransformerBlock(
351
+ inner_dim,
352
+ n_heads,
353
+ d_head,
354
+ dropout=dropout,
355
+ context_dim=context_dim,
356
+ attention_cls=attention_cls,
357
+ checkpoint=use_checkpoint) for d in range(depth)
358
+ ])
359
+ if not use_linear:
360
+ self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
361
+ else:
362
+ self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
363
+ self.use_linear = use_linear
364
+
365
+ def forward(self, x, context=None):
366
+ b, c, t, h, w = x.shape
367
+ x_in = x
368
+ x = self.norm(x)
369
+ x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
370
+ if not self.use_linear:
371
+ x = self.proj_in(x)
372
+ x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
373
+ if self.use_linear:
374
+ x = self.proj_in(x)
375
+
376
+ temp_mask = None
377
+ if self.causal_attention:
378
+ # slice the from mask map
379
+ temp_mask = self.mask[:,:t,:t].to(x.device)
380
+
381
+ if temp_mask is not None:
382
+ mask = temp_mask.to(x.device)
383
+ mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
384
+ else:
385
+ mask = None
386
+
387
+ if self.only_self_att:
388
+ ## note: if no context is given, cross-attention defaults to self-attention
389
+ for i, block in enumerate(self.transformer_blocks):
390
+ x = block(x, mask=mask)
391
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
392
+ else:
393
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
394
+ context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
395
+ for i, block in enumerate(self.transformer_blocks):
396
+ # calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
397
+ for j in range(b):
398
+ context_j = repeat(
399
+ context[j],
400
+ 't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous()
401
+ ## note: causal mask will not applied in cross-attention case
402
+ x[j] = block(x[j], context=context_j)
403
+
404
+ if self.use_linear:
405
+ x = self.proj_out(x)
406
+ x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
407
+ if not self.use_linear:
408
+ x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
409
+ x = self.proj_out(x)
410
+ x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
411
+
412
+ return x + x_in
413
+
414
+
415
+ class GEGLU(nn.Module):
416
+ def __init__(self, dim_in, dim_out):
417
+ super().__init__()
418
+ self.proj = nn.Linear(dim_in, dim_out * 2)
419
+
420
+ def forward(self, x):
421
+ x, gate = self.proj(x).chunk(2, dim=-1)
422
+ return x * F.gelu(gate)
423
+
424
+
425
+ class FeedForward(nn.Module):
426
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
427
+ super().__init__()
428
+ inner_dim = int(dim * mult)
429
+ dim_out = default(dim_out, dim)
430
+ project_in = nn.Sequential(
431
+ nn.Linear(dim, inner_dim),
432
+ nn.GELU()
433
+ ) if not glu else GEGLU(dim, inner_dim)
434
+
435
+ self.net = nn.Sequential(
436
+ project_in,
437
+ nn.Dropout(dropout),
438
+ nn.Linear(inner_dim, dim_out)
439
+ )
440
+
441
+ def forward(self, x):
442
+ return self.net(x)
443
+
444
+
445
+ class LinearAttention(nn.Module):
446
+ def __init__(self, dim, heads=4, dim_head=32):
447
+ super().__init__()
448
+ self.heads = heads
449
+ hidden_dim = dim_head * heads
450
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
451
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
452
+
453
+ def forward(self, x):
454
+ b, c, h, w = x.shape
455
+ qkv = self.to_qkv(x)
456
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
457
+ k = k.softmax(dim=-1)
458
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
459
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
460
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
461
+ return self.to_out(out)
462
+
463
+
464
+ class SpatialSelfAttention(nn.Module):
465
+ def __init__(self, in_channels):
466
+ super().__init__()
467
+ self.in_channels = in_channels
468
+
469
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
470
+ self.q = torch.nn.Conv2d(in_channels,
471
+ in_channels,
472
+ kernel_size=1,
473
+ stride=1,
474
+ padding=0)
475
+ self.k = torch.nn.Conv2d(in_channels,
476
+ in_channels,
477
+ kernel_size=1,
478
+ stride=1,
479
+ padding=0)
480
+ self.v = torch.nn.Conv2d(in_channels,
481
+ in_channels,
482
+ kernel_size=1,
483
+ stride=1,
484
+ padding=0)
485
+ self.proj_out = torch.nn.Conv2d(in_channels,
486
+ in_channels,
487
+ kernel_size=1,
488
+ stride=1,
489
+ padding=0)
490
+
491
+ def forward(self, x):
492
+ h_ = x
493
+ h_ = self.norm(h_)
494
+ q = self.q(h_)
495
+ k = self.k(h_)
496
+ v = self.v(h_)
497
+
498
+ # compute attention
499
+ b,c,h,w = q.shape
500
+ q = rearrange(q, 'b c h w -> b (h w) c')
501
+ k = rearrange(k, 'b c h w -> b c (h w)')
502
+ w_ = torch.einsum('bij,bjk->bik', q, k)
503
+
504
+ w_ = w_ * (int(c)**(-0.5))
505
+ w_ = torch.nn.functional.softmax(w_, dim=2)
506
+
507
+ # attend to values
508
+ v = rearrange(v, 'b c h w -> b c (h w)')
509
+ w_ = rearrange(w_, 'b i j -> b j i')
510
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
511
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
512
+ h_ = self.proj_out(h_)
513
+
514
+ return x+h_
lvdm/modules/attention_svd.py ADDED
@@ -0,0 +1,759 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import math
3
+ from inspect import isfunction
4
+ from typing import Any, Optional
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from einops import rearrange, repeat
9
+ from packaging import version
10
+ from torch import nn
11
+ from torch.utils.checkpoint import checkpoint
12
+
13
+ logpy = logging.getLogger(__name__)
14
+
15
+ if version.parse(torch.__version__) >= version.parse("2.0.0"):
16
+ SDP_IS_AVAILABLE = True
17
+ from torch.backends.cuda import SDPBackend, sdp_kernel
18
+
19
+ BACKEND_MAP = {
20
+ SDPBackend.MATH: {
21
+ "enable_math": True,
22
+ "enable_flash": False,
23
+ "enable_mem_efficient": False,
24
+ },
25
+ SDPBackend.FLASH_ATTENTION: {
26
+ "enable_math": False,
27
+ "enable_flash": True,
28
+ "enable_mem_efficient": False,
29
+ },
30
+ SDPBackend.EFFICIENT_ATTENTION: {
31
+ "enable_math": False,
32
+ "enable_flash": False,
33
+ "enable_mem_efficient": True,
34
+ },
35
+ None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
36
+ }
37
+ else:
38
+ from contextlib import nullcontext
39
+
40
+ SDP_IS_AVAILABLE = False
41
+ sdp_kernel = nullcontext
42
+ BACKEND_MAP = {}
43
+ logpy.warn(
44
+ f"No SDP backend available, likely because you are running in pytorch "
45
+ f"versions < 2.0. In fact, you are using PyTorch {torch.__version__}. "
46
+ f"You might want to consider upgrading."
47
+ )
48
+
49
+ try:
50
+ import xformers
51
+ import xformers.ops
52
+
53
+ XFORMERS_IS_AVAILABLE = True
54
+ except:
55
+ XFORMERS_IS_AVAILABLE = False
56
+ logpy.warn("no module 'xformers'. Processing without...")
57
+
58
+ # from .diffusionmodules.util import mixed_checkpoint as checkpoint
59
+
60
+
61
+ def exists(val):
62
+ return val is not None
63
+
64
+
65
+ def uniq(arr):
66
+ return {el: True for el in arr}.keys()
67
+
68
+
69
+ def default(val, d):
70
+ if exists(val):
71
+ return val
72
+ return d() if isfunction(d) else d
73
+
74
+
75
+ def max_neg_value(t):
76
+ return -torch.finfo(t.dtype).max
77
+
78
+
79
+ def init_(tensor):
80
+ dim = tensor.shape[-1]
81
+ std = 1 / math.sqrt(dim)
82
+ tensor.uniform_(-std, std)
83
+ return tensor
84
+
85
+
86
+ # feedforward
87
+ class GEGLU(nn.Module):
88
+ def __init__(self, dim_in, dim_out):
89
+ super().__init__()
90
+ self.proj = nn.Linear(dim_in, dim_out * 2)
91
+
92
+ def forward(self, x):
93
+ x, gate = self.proj(x).chunk(2, dim=-1)
94
+ return x * F.gelu(gate)
95
+
96
+
97
+ class FeedForward(nn.Module):
98
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
99
+ super().__init__()
100
+ inner_dim = int(dim * mult)
101
+ dim_out = default(dim_out, dim)
102
+ project_in = (
103
+ nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
104
+ if not glu
105
+ else GEGLU(dim, inner_dim)
106
+ )
107
+
108
+ self.net = nn.Sequential(
109
+ project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
110
+ )
111
+
112
+ def forward(self, x):
113
+ return self.net(x)
114
+
115
+
116
+ def zero_module(module):
117
+ """
118
+ Zero out the parameters of a module and return it.
119
+ """
120
+ for p in module.parameters():
121
+ p.detach().zero_()
122
+ return module
123
+
124
+
125
+ def Normalize(in_channels):
126
+ return torch.nn.GroupNorm(
127
+ num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
128
+ )
129
+
130
+
131
+ class LinearAttention(nn.Module):
132
+ def __init__(self, dim, heads=4, dim_head=32):
133
+ super().__init__()
134
+ self.heads = heads
135
+ hidden_dim = dim_head * heads
136
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
137
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
138
+
139
+ def forward(self, x):
140
+ b, c, h, w = x.shape
141
+ qkv = self.to_qkv(x)
142
+ q, k, v = rearrange(
143
+ qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
144
+ )
145
+ k = k.softmax(dim=-1)
146
+ context = torch.einsum("bhdn,bhen->bhde", k, v)
147
+ out = torch.einsum("bhde,bhdn->bhen", context, q)
148
+ out = rearrange(
149
+ out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
150
+ )
151
+ return self.to_out(out)
152
+
153
+
154
+ class SelfAttention(nn.Module):
155
+ ATTENTION_MODES = ("xformers", "torch", "math")
156
+
157
+ def __init__(
158
+ self,
159
+ dim: int,
160
+ num_heads: int = 8,
161
+ qkv_bias: bool = False,
162
+ qk_scale: Optional[float] = None,
163
+ attn_drop: float = 0.0,
164
+ proj_drop: float = 0.0,
165
+ attn_mode: str = "xformers",
166
+ ):
167
+ super().__init__()
168
+ self.num_heads = num_heads
169
+ head_dim = dim // num_heads
170
+ self.scale = qk_scale or head_dim**-0.5
171
+
172
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
173
+ self.attn_drop = nn.Dropout(attn_drop)
174
+ self.proj = nn.Linear(dim, dim)
175
+ self.proj_drop = nn.Dropout(proj_drop)
176
+ assert attn_mode in self.ATTENTION_MODES
177
+ self.attn_mode = attn_mode
178
+
179
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
180
+ B, L, C = x.shape
181
+
182
+ qkv = self.qkv(x)
183
+ if self.attn_mode == "torch":
184
+ qkv = rearrange(
185
+ qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads
186
+ ).float()
187
+ q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
188
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
189
+ x = rearrange(x, "B H L D -> B L (H D)")
190
+ elif self.attn_mode == "xformers":
191
+ qkv = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
192
+ q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
193
+ x = xformers.ops.memory_efficient_attention(q, k, v)
194
+ x = rearrange(x, "B L H D -> B L (H D)", H=self.num_heads)
195
+ elif self.attn_mode == "math":
196
+ qkv = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
197
+ q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
198
+ attn = (q @ k.transpose(-2, -1)) * self.scale
199
+ attn = attn.softmax(dim=-1)
200
+ attn = self.attn_drop(attn)
201
+ x = (attn @ v).transpose(1, 2).reshape(B, L, C)
202
+ else:
203
+ raise NotImplemented
204
+
205
+ x = self.proj(x)
206
+ x = self.proj_drop(x)
207
+ return x
208
+
209
+
210
+ class SpatialSelfAttention(nn.Module):
211
+ def __init__(self, in_channels):
212
+ super().__init__()
213
+ self.in_channels = in_channels
214
+
215
+ self.norm = Normalize(in_channels)
216
+ self.q = torch.nn.Conv2d(
217
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
218
+ )
219
+ self.k = torch.nn.Conv2d(
220
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
221
+ )
222
+ self.v = torch.nn.Conv2d(
223
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
224
+ )
225
+ self.proj_out = torch.nn.Conv2d(
226
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
227
+ )
228
+
229
+ def forward(self, x):
230
+ h_ = x
231
+ h_ = self.norm(h_)
232
+ q = self.q(h_)
233
+ k = self.k(h_)
234
+ v = self.v(h_)
235
+
236
+ # compute attention
237
+ b, c, h, w = q.shape
238
+ q = rearrange(q, "b c h w -> b (h w) c")
239
+ k = rearrange(k, "b c h w -> b c (h w)")
240
+ w_ = torch.einsum("bij,bjk->bik", q, k)
241
+
242
+ w_ = w_ * (int(c) ** (-0.5))
243
+ w_ = torch.nn.functional.softmax(w_, dim=2)
244
+
245
+ # attend to values
246
+ v = rearrange(v, "b c h w -> b c (h w)")
247
+ w_ = rearrange(w_, "b i j -> b j i")
248
+ h_ = torch.einsum("bij,bjk->bik", v, w_)
249
+ h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
250
+ h_ = self.proj_out(h_)
251
+
252
+ return x + h_
253
+
254
+
255
+ class CrossAttention(nn.Module):
256
+ def __init__(
257
+ self,
258
+ query_dim,
259
+ context_dim=None,
260
+ heads=8,
261
+ dim_head=64,
262
+ dropout=0.0,
263
+ backend=None,
264
+ ):
265
+ super().__init__()
266
+ inner_dim = dim_head * heads
267
+ context_dim = default(context_dim, query_dim)
268
+
269
+ self.scale = dim_head**-0.5
270
+ self.heads = heads
271
+
272
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
273
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
274
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
275
+
276
+ self.to_out = nn.Sequential(
277
+ nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
278
+ )
279
+ self.backend = backend
280
+
281
+ def forward(
282
+ self,
283
+ x,
284
+ context=None,
285
+ mask=None,
286
+ additional_tokens=None,
287
+ n_times_crossframe_attn_in_self=0,
288
+ ):
289
+ h = self.heads
290
+
291
+ if additional_tokens is not None:
292
+ # get the number of masked tokens at the beginning of the output sequence
293
+ n_tokens_to_mask = additional_tokens.shape[1]
294
+ # add additional token
295
+ x = torch.cat([additional_tokens, x], dim=1)
296
+
297
+ q = self.to_q(x)
298
+ context = default(context, x)
299
+ k = self.to_k(context)
300
+ v = self.to_v(context)
301
+
302
+ if n_times_crossframe_attn_in_self:
303
+ # reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
304
+ assert x.shape[0] % n_times_crossframe_attn_in_self == 0
305
+ n_cp = x.shape[0] // n_times_crossframe_attn_in_self
306
+ k = repeat(
307
+ k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
308
+ )
309
+ v = repeat(
310
+ v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
311
+ )
312
+
313
+ q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
314
+
315
+ ## old
316
+ """
317
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
318
+ del q, k
319
+
320
+ if exists(mask):
321
+ mask = rearrange(mask, 'b ... -> b (...)')
322
+ max_neg_value = -torch.finfo(sim.dtype).max
323
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
324
+ sim.masked_fill_(~mask, max_neg_value)
325
+
326
+ # attention, what we cannot get enough of
327
+ sim = sim.softmax(dim=-1)
328
+
329
+ out = einsum('b i j, b j d -> b i d', sim, v)
330
+ """
331
+ ## new
332
+ with sdp_kernel(**BACKEND_MAP[self.backend]):
333
+ # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
334
+ out = F.scaled_dot_product_attention(
335
+ q, k, v, attn_mask=mask
336
+ ) # scale is dim_head ** -0.5 per default
337
+
338
+ del q, k, v
339
+ out = rearrange(out, "b h n d -> b n (h d)", h=h)
340
+
341
+ if additional_tokens is not None:
342
+ # remove additional token
343
+ out = out[:, n_tokens_to_mask:]
344
+ return self.to_out(out)
345
+
346
+
347
+ class MemoryEfficientCrossAttention(nn.Module):
348
+ # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
349
+ def __init__(
350
+ self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs
351
+ ):
352
+ super().__init__()
353
+ logpy.debug(
354
+ f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, "
355
+ f"context_dim is {context_dim} and using {heads} heads with a "
356
+ f"dimension of {dim_head}."
357
+ )
358
+ inner_dim = dim_head * heads
359
+ context_dim = default(context_dim, query_dim)
360
+
361
+ self.heads = heads
362
+ self.dim_head = dim_head
363
+
364
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
365
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
366
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
367
+
368
+ self.to_out = nn.Sequential(
369
+ nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
370
+ )
371
+ self.attention_op: Optional[Any] = None
372
+
373
+ def forward(
374
+ self,
375
+ x,
376
+ context=None,
377
+ mask=None,
378
+ additional_tokens=None,
379
+ n_times_crossframe_attn_in_self=0,
380
+ ):
381
+ if additional_tokens is not None:
382
+ # get the number of masked tokens at the beginning of the output sequence
383
+ n_tokens_to_mask = additional_tokens.shape[1]
384
+ # add additional token
385
+ x = torch.cat([additional_tokens, x], dim=1)
386
+ q = self.to_q(x)
387
+ context = default(context, x)
388
+ k = self.to_k(context)
389
+ v = self.to_v(context)
390
+
391
+ if n_times_crossframe_attn_in_self:
392
+ # reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
393
+ assert x.shape[0] % n_times_crossframe_attn_in_self == 0
394
+ # n_cp = x.shape[0]//n_times_crossframe_attn_in_self
395
+ k = repeat(
396
+ k[::n_times_crossframe_attn_in_self],
397
+ "b ... -> (b n) ...",
398
+ n=n_times_crossframe_attn_in_self,
399
+ )
400
+ v = repeat(
401
+ v[::n_times_crossframe_attn_in_self],
402
+ "b ... -> (b n) ...",
403
+ n=n_times_crossframe_attn_in_self,
404
+ )
405
+
406
+ b, _, _ = q.shape
407
+ q, k, v = map(
408
+ lambda t: t.unsqueeze(3)
409
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
410
+ .permute(0, 2, 1, 3)
411
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
412
+ .contiguous(),
413
+ (q, k, v),
414
+ )
415
+
416
+ # actually compute the attention, what we cannot get enough of
417
+ if version.parse(xformers.__version__) >= version.parse("0.0.21"):
418
+ # NOTE: workaround for
419
+ # https://github.com/facebookresearch/xformers/issues/845
420
+ max_bs = 32768
421
+ N = q.shape[0]
422
+ n_batches = math.ceil(N / max_bs)
423
+ out = list()
424
+ for i_batch in range(n_batches):
425
+ batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs)
426
+ out.append(
427
+ xformers.ops.memory_efficient_attention(
428
+ q[batch],
429
+ k[batch],
430
+ v[batch],
431
+ attn_bias=None,
432
+ op=self.attention_op,
433
+ )
434
+ )
435
+ out = torch.cat(out, 0)
436
+ else:
437
+ out = xformers.ops.memory_efficient_attention(
438
+ q, k, v, attn_bias=None, op=self.attention_op
439
+ )
440
+
441
+ # TODO: Use this directly in the attention operation, as a bias
442
+ if exists(mask):
443
+ raise NotImplementedError
444
+ out = (
445
+ out.unsqueeze(0)
446
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
447
+ .permute(0, 2, 1, 3)
448
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
449
+ )
450
+ if additional_tokens is not None:
451
+ # remove additional token
452
+ out = out[:, n_tokens_to_mask:]
453
+ return self.to_out(out)
454
+
455
+
456
+ class BasicTransformerBlock(nn.Module):
457
+ ATTENTION_MODES = {
458
+ "softmax": CrossAttention, # vanilla attention
459
+ "softmax-xformers": MemoryEfficientCrossAttention, # ampere
460
+ }
461
+
462
+ def __init__(
463
+ self,
464
+ dim,
465
+ n_heads,
466
+ d_head,
467
+ dropout=0.0,
468
+ context_dim=None,
469
+ gated_ff=True,
470
+ checkpoint=True,
471
+ disable_self_attn=False,
472
+ attn_mode="softmax",
473
+ sdp_backend=None,
474
+ ):
475
+ super().__init__()
476
+ assert attn_mode in self.ATTENTION_MODES
477
+ if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
478
+ logpy.warn(
479
+ f"Attention mode '{attn_mode}' is not available. Falling "
480
+ f"back to native attention. This is not a problem in "
481
+ f"Pytorch >= 2.0. FYI, you are running with PyTorch "
482
+ f"version {torch.__version__}."
483
+ )
484
+ attn_mode = "softmax"
485
+ elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
486
+ logpy.warn(
487
+ "We do not support vanilla attention anymore, as it is too "
488
+ "expensive. Sorry."
489
+ )
490
+ if not XFORMERS_IS_AVAILABLE:
491
+ assert (
492
+ False
493
+ ), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
494
+ else:
495
+ logpy.info("Falling back to xformers efficient attention.")
496
+ attn_mode = "softmax-xformers"
497
+ attn_cls = self.ATTENTION_MODES[attn_mode]
498
+ if version.parse(torch.__version__) >= version.parse("2.0.0"):
499
+ assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
500
+ else:
501
+ assert sdp_backend is None
502
+ self.disable_self_attn = disable_self_attn
503
+ self.attn1 = attn_cls(
504
+ query_dim=dim,
505
+ heads=n_heads,
506
+ dim_head=d_head,
507
+ dropout=dropout,
508
+ context_dim=context_dim if self.disable_self_attn else None,
509
+ backend=sdp_backend,
510
+ ) # is a self-attention if not self.disable_self_attn
511
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
512
+ self.attn2 = attn_cls(
513
+ query_dim=dim,
514
+ context_dim=context_dim,
515
+ heads=n_heads,
516
+ dim_head=d_head,
517
+ dropout=dropout,
518
+ backend=sdp_backend,
519
+ ) # is self-attn if context is none
520
+ self.norm1 = nn.LayerNorm(dim)
521
+ self.norm2 = nn.LayerNorm(dim)
522
+ self.norm3 = nn.LayerNorm(dim)
523
+ self.checkpoint = checkpoint
524
+ if self.checkpoint:
525
+ logpy.debug(f"{self.__class__.__name__} is using checkpointing")
526
+
527
+ def forward(
528
+ self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
529
+ ):
530
+ kwargs = {"x": x}
531
+
532
+ if context is not None:
533
+ kwargs.update({"context": context})
534
+
535
+ if additional_tokens is not None:
536
+ kwargs.update({"additional_tokens": additional_tokens})
537
+
538
+ if n_times_crossframe_attn_in_self:
539
+ kwargs.update(
540
+ {"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
541
+ )
542
+
543
+ # return mixed_checkpoint(self._forward, kwargs, self.parameters(), self.checkpoint)
544
+ if self.checkpoint:
545
+ # inputs = {"x": x, "context": context}
546
+ return checkpoint(self._forward, x, context)
547
+ # return checkpoint(self._forward, inputs, self.parameters(), self.checkpoint)
548
+ else:
549
+ return self._forward(**kwargs)
550
+
551
+ def _forward(
552
+ self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
553
+ ):
554
+ x = (
555
+ self.attn1(
556
+ self.norm1(x),
557
+ context=context if self.disable_self_attn else None,
558
+ additional_tokens=additional_tokens,
559
+ n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
560
+ if not self.disable_self_attn
561
+ else 0,
562
+ )
563
+ + x
564
+ )
565
+ x = (
566
+ self.attn2(
567
+ self.norm2(x), context=context, additional_tokens=additional_tokens
568
+ )
569
+ + x
570
+ )
571
+ x = self.ff(self.norm3(x)) + x
572
+ return x
573
+
574
+
575
+ class BasicTransformerSingleLayerBlock(nn.Module):
576
+ ATTENTION_MODES = {
577
+ "softmax": CrossAttention, # vanilla attention
578
+ "softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
579
+ # (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
580
+ }
581
+
582
+ def __init__(
583
+ self,
584
+ dim,
585
+ n_heads,
586
+ d_head,
587
+ dropout=0.0,
588
+ context_dim=None,
589
+ gated_ff=True,
590
+ checkpoint=True,
591
+ attn_mode="softmax",
592
+ ):
593
+ super().__init__()
594
+ assert attn_mode in self.ATTENTION_MODES
595
+ attn_cls = self.ATTENTION_MODES[attn_mode]
596
+ self.attn1 = attn_cls(
597
+ query_dim=dim,
598
+ heads=n_heads,
599
+ dim_head=d_head,
600
+ dropout=dropout,
601
+ context_dim=context_dim,
602
+ )
603
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
604
+ self.norm1 = nn.LayerNorm(dim)
605
+ self.norm2 = nn.LayerNorm(dim)
606
+ self.checkpoint = checkpoint
607
+
608
+ def forward(self, x, context=None):
609
+ # inputs = {"x": x, "context": context}
610
+ # return checkpoint(self._forward, inputs, self.parameters(), self.checkpoint)
611
+ return checkpoint(self._forward, x, context)
612
+
613
+ def _forward(self, x, context=None):
614
+ x = self.attn1(self.norm1(x), context=context) + x
615
+ x = self.ff(self.norm2(x)) + x
616
+ return x
617
+
618
+
619
+ class SpatialTransformer(nn.Module):
620
+ """
621
+ Transformer block for image-like data.
622
+ First, project the input (aka embedding)
623
+ and reshape to b, t, d.
624
+ Then apply standard transformer action.
625
+ Finally, reshape to image
626
+ NEW: use_linear for more efficiency instead of the 1x1 convs
627
+ """
628
+
629
+ def __init__(
630
+ self,
631
+ in_channels,
632
+ n_heads,
633
+ d_head,
634
+ depth=1,
635
+ dropout=0.0,
636
+ context_dim=None,
637
+ disable_self_attn=False,
638
+ use_linear=False,
639
+ attn_type="softmax",
640
+ use_checkpoint=True,
641
+ # sdp_backend=SDPBackend.FLASH_ATTENTION
642
+ sdp_backend=None,
643
+ ):
644
+ super().__init__()
645
+ logpy.debug(
646
+ f"constructing {self.__class__.__name__} of depth {depth} w/ "
647
+ f"{in_channels} channels and {n_heads} heads."
648
+ )
649
+
650
+ if exists(context_dim) and not isinstance(context_dim, list):
651
+ context_dim = [context_dim]
652
+ if exists(context_dim) and isinstance(context_dim, list):
653
+ if depth != len(context_dim):
654
+ logpy.warn(
655
+ f"{self.__class__.__name__}: Found context dims "
656
+ f"{context_dim} of depth {len(context_dim)}, which does not "
657
+ f"match the specified 'depth' of {depth}. Setting context_dim "
658
+ f"to {depth * [context_dim[0]]} now."
659
+ )
660
+ # depth does not match context dims.
661
+ assert all(
662
+ map(lambda x: x == context_dim[0], context_dim)
663
+ ), "need homogenous context_dim to match depth automatically"
664
+ context_dim = depth * [context_dim[0]]
665
+ elif context_dim is None:
666
+ context_dim = [None] * depth
667
+ self.in_channels = in_channels
668
+ inner_dim = n_heads * d_head
669
+ self.norm = Normalize(in_channels)
670
+ if not use_linear:
671
+ self.proj_in = nn.Conv2d(
672
+ in_channels, inner_dim, kernel_size=1, stride=1, padding=0
673
+ )
674
+ else:
675
+ self.proj_in = nn.Linear(in_channels, inner_dim)
676
+
677
+ self.transformer_blocks = nn.ModuleList(
678
+ [
679
+ BasicTransformerBlock(
680
+ inner_dim,
681
+ n_heads,
682
+ d_head,
683
+ dropout=dropout,
684
+ context_dim=context_dim[d],
685
+ disable_self_attn=disable_self_attn,
686
+ attn_mode=attn_type,
687
+ checkpoint=use_checkpoint,
688
+ sdp_backend=sdp_backend,
689
+ )
690
+ for d in range(depth)
691
+ ]
692
+ )
693
+ if not use_linear:
694
+ self.proj_out = zero_module(
695
+ nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
696
+ )
697
+ else:
698
+ # self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
699
+ self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
700
+ self.use_linear = use_linear
701
+
702
+ def forward(self, x, context=None):
703
+ # note: if no context is given, cross-attention defaults to self-attention
704
+ if not isinstance(context, list):
705
+ context = [context]
706
+ b, c, h, w = x.shape
707
+ x_in = x
708
+ x = self.norm(x)
709
+ if not self.use_linear:
710
+ x = self.proj_in(x)
711
+ x = rearrange(x, "b c h w -> b (h w) c").contiguous()
712
+ if self.use_linear:
713
+ x = self.proj_in(x)
714
+ for i, block in enumerate(self.transformer_blocks):
715
+ if i > 0 and len(context) == 1:
716
+ i = 0 # use same context for each block
717
+ x = block(x, context=context[i])
718
+ if self.use_linear:
719
+ x = self.proj_out(x)
720
+ x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
721
+ if not self.use_linear:
722
+ x = self.proj_out(x)
723
+ return x + x_in
724
+
725
+
726
+ class SimpleTransformer(nn.Module):
727
+ def __init__(
728
+ self,
729
+ dim: int,
730
+ depth: int,
731
+ heads: int,
732
+ dim_head: int,
733
+ context_dim: Optional[int] = None,
734
+ dropout: float = 0.0,
735
+ checkpoint: bool = True,
736
+ ):
737
+ super().__init__()
738
+ self.layers = nn.ModuleList([])
739
+ for _ in range(depth):
740
+ self.layers.append(
741
+ BasicTransformerBlock(
742
+ dim,
743
+ heads,
744
+ dim_head,
745
+ dropout=dropout,
746
+ context_dim=context_dim,
747
+ attn_mode="softmax-xformers",
748
+ checkpoint=checkpoint,
749
+ )
750
+ )
751
+
752
+ def forward(
753
+ self,
754
+ x: torch.Tensor,
755
+ context: Optional[torch.Tensor] = None,
756
+ ) -> torch.Tensor:
757
+ for layer in self.layers:
758
+ x = layer(x, context)
759
+ return x
lvdm/modules/encoders/condition.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import kornia
4
+ import open_clip
5
+ from torch.utils.checkpoint import checkpoint
6
+ from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
7
+ from lvdm.common import autocast
8
+ from utils.utils import count_params
9
+
10
+
11
+ class AbstractEncoder(nn.Module):
12
+ def __init__(self):
13
+ super().__init__()
14
+
15
+ def encode(self, *args, **kwargs):
16
+ raise NotImplementedError
17
+
18
+
19
+ class IdentityEncoder(AbstractEncoder):
20
+ def encode(self, x):
21
+ return x
22
+
23
+
24
+ class ClassEmbedder(nn.Module):
25
+ def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
26
+ super().__init__()
27
+ self.key = key
28
+ self.embedding = nn.Embedding(n_classes, embed_dim)
29
+ self.n_classes = n_classes
30
+ self.ucg_rate = ucg_rate
31
+
32
+ def forward(self, batch, key=None, disable_dropout=False):
33
+ if key is None:
34
+ key = self.key
35
+ # this is for use in crossattn
36
+ c = batch[key][:, None]
37
+ if self.ucg_rate > 0. and not disable_dropout:
38
+ mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
39
+ c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
40
+ c = c.long()
41
+ c = self.embedding(c)
42
+ return c
43
+
44
+ def get_unconditional_conditioning(self, bs, device="cuda"):
45
+ uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
46
+ uc = torch.ones((bs,), device=device) * uc_class
47
+ uc = {self.key: uc}
48
+ return uc
49
+
50
+
51
+ def disabled_train(self, mode=True):
52
+ """Overwrite model.train with this function to make sure train/eval mode
53
+ does not change anymore."""
54
+ return self
55
+
56
+
57
+ class FrozenT5Embedder(AbstractEncoder):
58
+ """Uses the T5 transformer encoder for text"""
59
+
60
+ def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
61
+ freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
62
+ super().__init__()
63
+ self.tokenizer = T5Tokenizer.from_pretrained(version)
64
+ self.transformer = T5EncoderModel.from_pretrained(version)
65
+ self.device = device
66
+ self.max_length = max_length # TODO: typical value?
67
+ if freeze:
68
+ self.freeze()
69
+
70
+ def freeze(self):
71
+ self.transformer = self.transformer.eval()
72
+ # self.train = disabled_train
73
+ for param in self.parameters():
74
+ param.requires_grad = False
75
+
76
+ def forward(self, text):
77
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
78
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
79
+ tokens = batch_encoding["input_ids"].to(self.device)
80
+ outputs = self.transformer(input_ids=tokens)
81
+
82
+ z = outputs.last_hidden_state
83
+ return z
84
+
85
+ def encode(self, text):
86
+ return self(text)
87
+
88
+
89
+ class FrozenCLIPEmbedder(AbstractEncoder):
90
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
91
+ LAYERS = [
92
+ "last",
93
+ "pooled",
94
+ "hidden"
95
+ ]
96
+
97
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
98
+ freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
99
+ super().__init__()
100
+ assert layer in self.LAYERS
101
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
102
+ self.transformer = CLIPTextModel.from_pretrained(version)
103
+ self.device = device
104
+ self.max_length = max_length
105
+ if freeze:
106
+ self.freeze()
107
+ self.layer = layer
108
+ self.layer_idx = layer_idx
109
+ if layer == "hidden":
110
+ assert layer_idx is not None
111
+ assert 0 <= abs(layer_idx) <= 12
112
+
113
+ def freeze(self):
114
+ self.transformer = self.transformer.eval()
115
+ # self.train = disabled_train
116
+ for param in self.parameters():
117
+ param.requires_grad = False
118
+
119
+ def forward(self, text):
120
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
121
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
122
+ tokens = batch_encoding["input_ids"].to(self.device)
123
+ outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
124
+ if self.layer == "last":
125
+ z = outputs.last_hidden_state
126
+ elif self.layer == "pooled":
127
+ z = outputs.pooler_output[:, None, :]
128
+ else:
129
+ z = outputs.hidden_states[self.layer_idx]
130
+ return z
131
+
132
+ def encode(self, text):
133
+ return self(text)
134
+
135
+
136
+ class ClipImageEmbedder(nn.Module):
137
+ def __init__(
138
+ self,
139
+ model,
140
+ jit=False,
141
+ device='cuda' if torch.cuda.is_available() else 'cpu',
142
+ antialias=True,
143
+ ucg_rate=0.
144
+ ):
145
+ super().__init__()
146
+ from clip import load as load_clip
147
+ self.model, _ = load_clip(name=model, device=device, jit=jit)
148
+
149
+ self.antialias = antialias
150
+
151
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
152
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
153
+ self.ucg_rate = ucg_rate
154
+
155
+ def preprocess(self, x):
156
+ # normalize to [0,1]
157
+ x = kornia.geometry.resize(x, (224, 224),
158
+ interpolation='bicubic', align_corners=True,
159
+ antialias=self.antialias)
160
+ x = (x + 1.) / 2.
161
+ # re-normalize according to clip
162
+ x = kornia.enhance.normalize(x, self.mean, self.std)
163
+ return x
164
+
165
+ def forward(self, x, no_dropout=False):
166
+ # x is assumed to be in range [-1,1]
167
+ out = self.model.encode_image(self.preprocess(x))
168
+ out = out.to(x.dtype)
169
+ if self.ucg_rate > 0. and not no_dropout:
170
+ out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
171
+ return out
172
+
173
+
174
+ class FrozenOpenCLIPEmbedder(AbstractEncoder):
175
+ """
176
+ Uses the OpenCLIP transformer encoder for text
177
+ """
178
+ LAYERS = [
179
+ # "pooled",
180
+ "last",
181
+ "penultimate"
182
+ ]
183
+
184
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
185
+ freeze=True, layer="last"):
186
+ super().__init__()
187
+ assert layer in self.LAYERS
188
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
189
+ del model.visual
190
+ self.model = model
191
+
192
+ self.device = device
193
+ self.max_length = max_length
194
+ if freeze:
195
+ self.freeze()
196
+ self.layer = layer
197
+ if self.layer == "last":
198
+ self.layer_idx = 0
199
+ elif self.layer == "penultimate":
200
+ self.layer_idx = 1
201
+ else:
202
+ raise NotImplementedError()
203
+
204
+ def freeze(self):
205
+ self.model = self.model.eval()
206
+ for param in self.parameters():
207
+ param.requires_grad = False
208
+
209
+ def forward(self, text):
210
+ tokens = open_clip.tokenize(text) ## all clip models use 77 as context length
211
+ z = self.encode_with_transformer(tokens.to(self.device))
212
+ return z
213
+
214
+ def encode_with_transformer(self, text):
215
+ x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
216
+ x = x + self.model.positional_embedding
217
+ x = x.permute(1, 0, 2) # NLD -> LND
218
+ x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
219
+ x = x.permute(1, 0, 2) # LND -> NLD
220
+ x = self.model.ln_final(x)
221
+ return x
222
+
223
+ def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
224
+ for i, r in enumerate(self.model.transformer.resblocks):
225
+ if i == len(self.model.transformer.resblocks) - self.layer_idx:
226
+ break
227
+ if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
228
+ x = checkpoint(r, x, attn_mask)
229
+ else:
230
+ x = r(x, attn_mask=attn_mask)
231
+ return x
232
+
233
+ def encode(self, text):
234
+ return self(text)
235
+
236
+
237
+ class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
238
+ """
239
+ Uses the OpenCLIP vision transformer encoder for images
240
+ """
241
+
242
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
243
+ freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
244
+ super().__init__()
245
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
246
+ pretrained=version, )
247
+ del model.transformer
248
+ self.model = model
249
+ # self.mapper = torch.nn.Linear(1280, 1024)
250
+ self.device = device
251
+ self.max_length = max_length
252
+ if freeze:
253
+ self.freeze()
254
+ self.layer = layer
255
+ if self.layer == "penultimate":
256
+ raise NotImplementedError()
257
+ self.layer_idx = 1
258
+
259
+ self.antialias = antialias
260
+
261
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
262
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
263
+ self.ucg_rate = ucg_rate
264
+
265
+ def preprocess(self, x):
266
+ # normalize to [0,1]
267
+ x = kornia.geometry.resize(x, (224, 224),
268
+ interpolation='bicubic', align_corners=True,
269
+ antialias=self.antialias)
270
+ x = (x + 1.) / 2.
271
+ # renormalize according to clip
272
+ x = kornia.enhance.normalize(x, self.mean, self.std)
273
+ return x
274
+
275
+ def freeze(self):
276
+ self.model = self.model.eval()
277
+ for param in self.model.parameters():
278
+ param.requires_grad = False
279
+
280
+ @autocast
281
+ def forward(self, image, no_dropout=False):
282
+ z = self.encode_with_vision_transformer(image)
283
+ if self.ucg_rate > 0. and not no_dropout:
284
+ z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
285
+ return z
286
+
287
+ def encode_with_vision_transformer(self, img):
288
+ img = self.preprocess(img)
289
+ x = self.model.visual(img)
290
+ return x
291
+
292
+ def encode(self, text):
293
+ return self(text)
294
+
295
+ class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder):
296
+ """
297
+ Uses the OpenCLIP vision transformer encoder for images
298
+ """
299
+
300
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda",
301
+ freeze=True, layer="pooled", antialias=True):
302
+ super().__init__()
303
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
304
+ pretrained=version, )
305
+ del model.transformer
306
+ self.model = model
307
+ self.device = device
308
+
309
+ if freeze:
310
+ self.freeze()
311
+ self.layer = layer
312
+ if self.layer == "penultimate":
313
+ raise NotImplementedError()
314
+ self.layer_idx = 1
315
+
316
+ self.antialias = antialias
317
+
318
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
319
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
320
+
321
+
322
+ def preprocess(self, x):
323
+ # normalize to [0,1]
324
+ x = kornia.geometry.resize(x, (224, 224),
325
+ interpolation='bicubic', align_corners=True,
326
+ antialias=self.antialias)
327
+ x = (x + 1.) / 2.
328
+ # renormalize according to clip
329
+ x = kornia.enhance.normalize(x, self.mean, self.std)
330
+ return x
331
+
332
+ def freeze(self):
333
+ self.model = self.model.eval()
334
+ for param in self.model.parameters():
335
+ param.requires_grad = False
336
+
337
+ def forward(self, image, no_dropout=False):
338
+ ## image: b c h w
339
+ z = self.encode_with_vision_transformer(image)
340
+ return z
341
+
342
+ def encode_with_vision_transformer(self, x):
343
+ x = self.preprocess(x)
344
+
345
+ # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
346
+ if self.model.visual.input_patchnorm:
347
+ # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
348
+ x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1])
349
+ x = x.permute(0, 2, 4, 1, 3, 5)
350
+ x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1)
351
+ x = self.model.visual.patchnorm_pre_ln(x)
352
+ x = self.model.visual.conv1(x)
353
+ else:
354
+ x = self.model.visual.conv1(x) # shape = [*, width, grid, grid]
355
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
356
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
357
+
358
+ # class embeddings and positional embeddings
359
+ x = torch.cat(
360
+ [self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
361
+ x], dim=1) # shape = [*, grid ** 2 + 1, width]
362
+ x = x + self.model.visual.positional_embedding.to(x.dtype)
363
+
364
+ # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
365
+ x = self.model.visual.patch_dropout(x)
366
+ x = self.model.visual.ln_pre(x)
367
+
368
+ x = x.permute(1, 0, 2) # NLD -> LND
369
+ x = self.model.visual.transformer(x)
370
+ x = x.permute(1, 0, 2) # LND -> NLD
371
+
372
+ return x
373
+
374
+ class FrozenCLIPT5Encoder(AbstractEncoder):
375
+ def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
376
+ clip_max_length=77, t5_max_length=77):
377
+ super().__init__()
378
+ self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
379
+ self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
380
+ print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
381
+ f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
382
+
383
+ def encode(self, text):
384
+ return self(text)
385
+
386
+ def forward(self, text):
387
+ clip_z = self.clip_encoder.encode(text)
388
+ t5_z = self.t5_encoder.encode(text)
389
+ return [clip_z, t5_z]
lvdm/modules/encoders/resampler.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2
+ # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3
+ # and https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/resampler.py
4
+ import math
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+
9
+ class ImageProjModel(nn.Module):
10
+ """Projection Model"""
11
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
12
+ super().__init__()
13
+ self.cross_attention_dim = cross_attention_dim
14
+ self.clip_extra_context_tokens = clip_extra_context_tokens
15
+ self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
16
+ self.norm = nn.LayerNorm(cross_attention_dim)
17
+
18
+ def forward(self, image_embeds):
19
+ #embeds = image_embeds
20
+ embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
21
+ clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
22
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
23
+ return clip_extra_context_tokens
24
+
25
+
26
+ # FFN
27
+ def FeedForward(dim, mult=4):
28
+ inner_dim = int(dim * mult)
29
+ return nn.Sequential(
30
+ nn.LayerNorm(dim),
31
+ nn.Linear(dim, inner_dim, bias=False),
32
+ nn.GELU(),
33
+ nn.Linear(inner_dim, dim, bias=False),
34
+ )
35
+
36
+
37
+ def reshape_tensor(x, heads):
38
+ bs, length, width = x.shape
39
+ #(bs, length, width) --> (bs, length, n_heads, dim_per_head)
40
+ x = x.view(bs, length, heads, -1)
41
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
42
+ x = x.transpose(1, 2)
43
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
44
+ x = x.reshape(bs, heads, length, -1)
45
+ return x
46
+
47
+
48
+ class PerceiverAttention(nn.Module):
49
+ def __init__(self, *, dim, dim_head=64, heads=8):
50
+ super().__init__()
51
+ self.scale = dim_head**-0.5
52
+ self.dim_head = dim_head
53
+ self.heads = heads
54
+ inner_dim = dim_head * heads
55
+
56
+ self.norm1 = nn.LayerNorm(dim)
57
+ self.norm2 = nn.LayerNorm(dim)
58
+
59
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
60
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
61
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
62
+
63
+
64
+ def forward(self, x, latents):
65
+ """
66
+ Args:
67
+ x (torch.Tensor): image features
68
+ shape (b, n1, D)
69
+ latent (torch.Tensor): latent features
70
+ shape (b, n2, D)
71
+ """
72
+ x = self.norm1(x)
73
+ latents = self.norm2(latents)
74
+
75
+ b, l, _ = latents.shape
76
+
77
+ q = self.to_q(latents)
78
+ kv_input = torch.cat((x, latents), dim=-2)
79
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
80
+
81
+ q = reshape_tensor(q, self.heads)
82
+ k = reshape_tensor(k, self.heads)
83
+ v = reshape_tensor(v, self.heads)
84
+
85
+ # attention
86
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
87
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
88
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
89
+ out = weight @ v
90
+
91
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
92
+
93
+ return self.to_out(out)
94
+
95
+
96
+ class Resampler(nn.Module):
97
+ def __init__(
98
+ self,
99
+ dim=1024,
100
+ depth=8,
101
+ dim_head=64,
102
+ heads=16,
103
+ num_queries=8,
104
+ embedding_dim=768,
105
+ output_dim=1024,
106
+ ff_mult=4,
107
+ video_length=None, # using frame-wise version or not
108
+ ):
109
+ super().__init__()
110
+ ## queries for a single frame / image
111
+ self.num_queries = num_queries
112
+ self.video_length = video_length
113
+
114
+ ## <num_queries> queries for each frame
115
+ if video_length is not None:
116
+ num_queries = num_queries * video_length
117
+
118
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
119
+ self.proj_in = nn.Linear(embedding_dim, dim)
120
+ self.proj_out = nn.Linear(dim, output_dim)
121
+ self.norm_out = nn.LayerNorm(output_dim)
122
+
123
+ self.layers = nn.ModuleList([])
124
+ for _ in range(depth):
125
+ self.layers.append(
126
+ nn.ModuleList(
127
+ [
128
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
129
+ FeedForward(dim=dim, mult=ff_mult),
130
+ ]
131
+ )
132
+ )
133
+
134
+ def forward(self, x):
135
+ latents = self.latents.repeat(x.size(0), 1, 1) ## B (T L) C
136
+ x = self.proj_in(x)
137
+
138
+ for attn, ff in self.layers:
139
+ latents = attn(x, latents) + latents
140
+ latents = ff(latents) + latents
141
+
142
+ latents = self.proj_out(latents)
143
+ latents = self.norm_out(latents) # B L C or B (T L) C
144
+
145
+ return latents
lvdm/modules/networks/ae_modules.py ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+
4
+ import torch
5
+ import numpy as np
6
+ import torch.nn as nn
7
+ from einops import rearrange
8
+
9
+ from utils.utils import instantiate_from_config
10
+ from lvdm.modules.attention import LinearAttention
11
+
12
+ def nonlinearity(x):
13
+ # swish
14
+ return x*torch.sigmoid(x)
15
+
16
+
17
+ def Normalize(in_channels, num_groups=32):
18
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
19
+
20
+
21
+
22
+ class LinAttnBlock(LinearAttention):
23
+ """to match AttnBlock usage"""
24
+ def __init__(self, in_channels):
25
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
26
+
27
+
28
+ class AttnBlock(nn.Module):
29
+ def __init__(self, in_channels):
30
+ super().__init__()
31
+ self.in_channels = in_channels
32
+
33
+ self.norm = Normalize(in_channels)
34
+ self.q = torch.nn.Conv2d(in_channels,
35
+ in_channels,
36
+ kernel_size=1,
37
+ stride=1,
38
+ padding=0)
39
+ self.k = torch.nn.Conv2d(in_channels,
40
+ in_channels,
41
+ kernel_size=1,
42
+ stride=1,
43
+ padding=0)
44
+ self.v = torch.nn.Conv2d(in_channels,
45
+ in_channels,
46
+ kernel_size=1,
47
+ stride=1,
48
+ padding=0)
49
+ self.proj_out = torch.nn.Conv2d(in_channels,
50
+ in_channels,
51
+ kernel_size=1,
52
+ stride=1,
53
+ padding=0)
54
+
55
+ def forward(self, x):
56
+ h_ = x
57
+ h_ = self.norm(h_)
58
+ q = self.q(h_)
59
+ k = self.k(h_)
60
+ v = self.v(h_)
61
+
62
+ # compute attention
63
+ b,c,h,w = q.shape
64
+ q = q.reshape(b,c,h*w) # bcl
65
+ q = q.permute(0,2,1) # bcl -> blc l=hw
66
+ k = k.reshape(b,c,h*w) # bcl
67
+
68
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
69
+ w_ = w_ * (int(c)**(-0.5))
70
+ w_ = torch.nn.functional.softmax(w_, dim=2)
71
+
72
+ # attend to values
73
+ v = v.reshape(b,c,h*w)
74
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
75
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
76
+ h_ = h_.reshape(b,c,h,w)
77
+
78
+ h_ = self.proj_out(h_)
79
+
80
+ return x+h_
81
+
82
+ def make_attn(in_channels, attn_type="vanilla"):
83
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
84
+ #print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
85
+ if attn_type == "vanilla":
86
+ return AttnBlock(in_channels)
87
+ elif attn_type == "none":
88
+ return nn.Identity(in_channels)
89
+ else:
90
+ return LinAttnBlock(in_channels)
91
+
92
+ class Downsample(nn.Module):
93
+ def __init__(self, in_channels, with_conv):
94
+ super().__init__()
95
+ self.with_conv = with_conv
96
+ self.in_channels = in_channels
97
+ if self.with_conv:
98
+ # no asymmetric padding in torch conv, must do it ourselves
99
+ self.conv = torch.nn.Conv2d(in_channels,
100
+ in_channels,
101
+ kernel_size=3,
102
+ stride=2,
103
+ padding=0)
104
+ def forward(self, x):
105
+ if self.with_conv:
106
+ pad = (0,1,0,1)
107
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
108
+ x = self.conv(x)
109
+ else:
110
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
111
+ return x
112
+
113
+ class Upsample(nn.Module):
114
+ def __init__(self, in_channels, with_conv):
115
+ super().__init__()
116
+ self.with_conv = with_conv
117
+ self.in_channels = in_channels
118
+ if self.with_conv:
119
+ self.conv = torch.nn.Conv2d(in_channels,
120
+ in_channels,
121
+ kernel_size=3,
122
+ stride=1,
123
+ padding=1)
124
+
125
+ def forward(self, x):
126
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
127
+ if self.with_conv:
128
+ x = self.conv(x)
129
+ return x
130
+
131
+ def get_timestep_embedding(timesteps, embedding_dim):
132
+ """
133
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
134
+ From Fairseq.
135
+ Build sinusoidal embeddings.
136
+ This matches the implementation in tensor2tensor, but differs slightly
137
+ from the description in Section 3.5 of "Attention Is All You Need".
138
+ """
139
+ assert len(timesteps.shape) == 1
140
+
141
+ half_dim = embedding_dim // 2
142
+ emb = math.log(10000) / (half_dim - 1)
143
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
144
+ emb = emb.to(device=timesteps.device)
145
+ emb = timesteps.float()[:, None] * emb[None, :]
146
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
147
+ if embedding_dim % 2 == 1: # zero pad
148
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
149
+ return emb
150
+
151
+
152
+
153
+ class ResnetBlock(nn.Module):
154
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
155
+ dropout, temb_channels=512):
156
+ super().__init__()
157
+ self.in_channels = in_channels
158
+ out_channels = in_channels if out_channels is None else out_channels
159
+ self.out_channels = out_channels
160
+ self.use_conv_shortcut = conv_shortcut
161
+
162
+ self.norm1 = Normalize(in_channels)
163
+ self.conv1 = torch.nn.Conv2d(in_channels,
164
+ out_channels,
165
+ kernel_size=3,
166
+ stride=1,
167
+ padding=1)
168
+ if temb_channels > 0:
169
+ self.temb_proj = torch.nn.Linear(temb_channels,
170
+ out_channels)
171
+ self.norm2 = Normalize(out_channels)
172
+ self.dropout = torch.nn.Dropout(dropout)
173
+ self.conv2 = torch.nn.Conv2d(out_channels,
174
+ out_channels,
175
+ kernel_size=3,
176
+ stride=1,
177
+ padding=1)
178
+ if self.in_channels != self.out_channels:
179
+ if self.use_conv_shortcut:
180
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
181
+ out_channels,
182
+ kernel_size=3,
183
+ stride=1,
184
+ padding=1)
185
+ else:
186
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
187
+ out_channels,
188
+ kernel_size=1,
189
+ stride=1,
190
+ padding=0)
191
+
192
+ def forward(self, x, temb):
193
+ h = x
194
+ h = self.norm1(h)
195
+ h = nonlinearity(h)
196
+ h = self.conv1(h)
197
+
198
+ if temb is not None:
199
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
200
+
201
+ h = self.norm2(h)
202
+ h = nonlinearity(h)
203
+ h = self.dropout(h)
204
+ h = self.conv2(h)
205
+
206
+ if self.in_channels != self.out_channels:
207
+ if self.use_conv_shortcut:
208
+ x = self.conv_shortcut(x)
209
+ else:
210
+ x = self.nin_shortcut(x)
211
+
212
+ return x+h
213
+
214
+ class Model(nn.Module):
215
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
216
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
217
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
218
+ super().__init__()
219
+ if use_linear_attn: attn_type = "linear"
220
+ self.ch = ch
221
+ self.temb_ch = self.ch*4
222
+ self.num_resolutions = len(ch_mult)
223
+ self.num_res_blocks = num_res_blocks
224
+ self.resolution = resolution
225
+ self.in_channels = in_channels
226
+
227
+ self.use_timestep = use_timestep
228
+ if self.use_timestep:
229
+ # timestep embedding
230
+ self.temb = nn.Module()
231
+ self.temb.dense = nn.ModuleList([
232
+ torch.nn.Linear(self.ch,
233
+ self.temb_ch),
234
+ torch.nn.Linear(self.temb_ch,
235
+ self.temb_ch),
236
+ ])
237
+
238
+ # downsampling
239
+ self.conv_in = torch.nn.Conv2d(in_channels,
240
+ self.ch,
241
+ kernel_size=3,
242
+ stride=1,
243
+ padding=1)
244
+
245
+ curr_res = resolution
246
+ in_ch_mult = (1,)+tuple(ch_mult)
247
+ self.down = nn.ModuleList()
248
+ for i_level in range(self.num_resolutions):
249
+ block = nn.ModuleList()
250
+ attn = nn.ModuleList()
251
+ block_in = ch*in_ch_mult[i_level]
252
+ block_out = ch*ch_mult[i_level]
253
+ for i_block in range(self.num_res_blocks):
254
+ block.append(ResnetBlock(in_channels=block_in,
255
+ out_channels=block_out,
256
+ temb_channels=self.temb_ch,
257
+ dropout=dropout))
258
+ block_in = block_out
259
+ if curr_res in attn_resolutions:
260
+ attn.append(make_attn(block_in, attn_type=attn_type))
261
+ down = nn.Module()
262
+ down.block = block
263
+ down.attn = attn
264
+ if i_level != self.num_resolutions-1:
265
+ down.downsample = Downsample(block_in, resamp_with_conv)
266
+ curr_res = curr_res // 2
267
+ self.down.append(down)
268
+
269
+ # middle
270
+ self.mid = nn.Module()
271
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
272
+ out_channels=block_in,
273
+ temb_channels=self.temb_ch,
274
+ dropout=dropout)
275
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
276
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
277
+ out_channels=block_in,
278
+ temb_channels=self.temb_ch,
279
+ dropout=dropout)
280
+
281
+ # upsampling
282
+ self.up = nn.ModuleList()
283
+ for i_level in reversed(range(self.num_resolutions)):
284
+ block = nn.ModuleList()
285
+ attn = nn.ModuleList()
286
+ block_out = ch*ch_mult[i_level]
287
+ skip_in = ch*ch_mult[i_level]
288
+ for i_block in range(self.num_res_blocks+1):
289
+ if i_block == self.num_res_blocks:
290
+ skip_in = ch*in_ch_mult[i_level]
291
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
292
+ out_channels=block_out,
293
+ temb_channels=self.temb_ch,
294
+ dropout=dropout))
295
+ block_in = block_out
296
+ if curr_res in attn_resolutions:
297
+ attn.append(make_attn(block_in, attn_type=attn_type))
298
+ up = nn.Module()
299
+ up.block = block
300
+ up.attn = attn
301
+ if i_level != 0:
302
+ up.upsample = Upsample(block_in, resamp_with_conv)
303
+ curr_res = curr_res * 2
304
+ self.up.insert(0, up) # prepend to get consistent order
305
+
306
+ # end
307
+ self.norm_out = Normalize(block_in)
308
+ self.conv_out = torch.nn.Conv2d(block_in,
309
+ out_ch,
310
+ kernel_size=3,
311
+ stride=1,
312
+ padding=1)
313
+
314
+ def forward(self, x, t=None, context=None):
315
+ #assert x.shape[2] == x.shape[3] == self.resolution
316
+ if context is not None:
317
+ # assume aligned context, cat along channel axis
318
+ x = torch.cat((x, context), dim=1)
319
+ if self.use_timestep:
320
+ # timestep embedding
321
+ assert t is not None
322
+ temb = get_timestep_embedding(t, self.ch)
323
+ temb = self.temb.dense[0](temb)
324
+ temb = nonlinearity(temb)
325
+ temb = self.temb.dense[1](temb)
326
+ else:
327
+ temb = None
328
+
329
+ # downsampling
330
+ hs = [self.conv_in(x)]
331
+ for i_level in range(self.num_resolutions):
332
+ for i_block in range(self.num_res_blocks):
333
+ h = self.down[i_level].block[i_block](hs[-1], temb)
334
+ if len(self.down[i_level].attn) > 0:
335
+ h = self.down[i_level].attn[i_block](h)
336
+ hs.append(h)
337
+ if i_level != self.num_resolutions-1:
338
+ hs.append(self.down[i_level].downsample(hs[-1]))
339
+
340
+ # middle
341
+ h = hs[-1]
342
+ h = self.mid.block_1(h, temb)
343
+ h = self.mid.attn_1(h)
344
+ h = self.mid.block_2(h, temb)
345
+
346
+ # upsampling
347
+ for i_level in reversed(range(self.num_resolutions)):
348
+ for i_block in range(self.num_res_blocks+1):
349
+ h = self.up[i_level].block[i_block](
350
+ torch.cat([h, hs.pop()], dim=1), temb)
351
+ if len(self.up[i_level].attn) > 0:
352
+ h = self.up[i_level].attn[i_block](h)
353
+ if i_level != 0:
354
+ h = self.up[i_level].upsample(h)
355
+
356
+ # end
357
+ h = self.norm_out(h)
358
+ h = nonlinearity(h)
359
+ h = self.conv_out(h)
360
+ return h
361
+
362
+ def get_last_layer(self):
363
+ return self.conv_out.weight
364
+
365
+
366
+ class Encoder(nn.Module):
367
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
368
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
369
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
370
+ **ignore_kwargs):
371
+ super().__init__()
372
+ if use_linear_attn: attn_type = "linear"
373
+ self.ch = ch
374
+ self.temb_ch = 0
375
+ self.num_resolutions = len(ch_mult)
376
+ self.num_res_blocks = num_res_blocks
377
+ self.resolution = resolution
378
+ self.in_channels = in_channels
379
+
380
+ # downsampling
381
+ self.conv_in = torch.nn.Conv2d(in_channels,
382
+ self.ch,
383
+ kernel_size=3,
384
+ stride=1,
385
+ padding=1)
386
+
387
+ curr_res = resolution
388
+ in_ch_mult = (1,)+tuple(ch_mult)
389
+ self.in_ch_mult = in_ch_mult
390
+ self.down = nn.ModuleList()
391
+ for i_level in range(self.num_resolutions):
392
+ block = nn.ModuleList()
393
+ attn = nn.ModuleList()
394
+ block_in = ch*in_ch_mult[i_level]
395
+ block_out = ch*ch_mult[i_level]
396
+ for i_block in range(self.num_res_blocks):
397
+ block.append(ResnetBlock(in_channels=block_in,
398
+ out_channels=block_out,
399
+ temb_channels=self.temb_ch,
400
+ dropout=dropout))
401
+ block_in = block_out
402
+ if curr_res in attn_resolutions:
403
+ attn.append(make_attn(block_in, attn_type=attn_type))
404
+ down = nn.Module()
405
+ down.block = block
406
+ down.attn = attn
407
+ if i_level != self.num_resolutions-1:
408
+ down.downsample = Downsample(block_in, resamp_with_conv)
409
+ curr_res = curr_res // 2
410
+ self.down.append(down)
411
+
412
+ # middle
413
+ self.mid = nn.Module()
414
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
415
+ out_channels=block_in,
416
+ temb_channels=self.temb_ch,
417
+ dropout=dropout)
418
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
419
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
420
+ out_channels=block_in,
421
+ temb_channels=self.temb_ch,
422
+ dropout=dropout)
423
+
424
+ # end
425
+ self.norm_out = Normalize(block_in)
426
+ self.conv_out = torch.nn.Conv2d(block_in,
427
+ 2*z_channels if double_z else z_channels,
428
+ kernel_size=3,
429
+ stride=1,
430
+ padding=1)
431
+
432
+ def forward(self, x, return_hidden_states=False):
433
+ # timestep embedding
434
+ temb = None
435
+
436
+ # print(f'encoder-input={x.shape}')
437
+ # downsampling
438
+ hs = [self.conv_in(x)]
439
+
440
+ ## if we return hidden states for decoder usage, we will store them in a list
441
+ if return_hidden_states:
442
+ hidden_states = []
443
+ # print(f'encoder-conv in feat={hs[0].shape}')
444
+ for i_level in range(self.num_resolutions):
445
+ for i_block in range(self.num_res_blocks):
446
+ h = self.down[i_level].block[i_block](hs[-1], temb)
447
+ # print(f'encoder-down feat={h.shape}')
448
+ if len(self.down[i_level].attn) > 0:
449
+ h = self.down[i_level].attn[i_block](h)
450
+ hs.append(h)
451
+ if return_hidden_states:
452
+ hidden_states.append(h)
453
+ if i_level != self.num_resolutions-1:
454
+ # print(f'encoder-downsample (input)={hs[-1].shape}')
455
+ hs.append(self.down[i_level].downsample(hs[-1]))
456
+ # print(f'encoder-downsample (output)={hs[-1].shape}')
457
+ if return_hidden_states:
458
+ hidden_states.append(hs[0])
459
+ # middle
460
+ h = hs[-1]
461
+ h = self.mid.block_1(h, temb)
462
+ # print(f'encoder-mid1 feat={h.shape}')
463
+ h = self.mid.attn_1(h)
464
+ h = self.mid.block_2(h, temb)
465
+ # print(f'encoder-mid2 feat={h.shape}')
466
+
467
+ # end
468
+ h = self.norm_out(h)
469
+ h = nonlinearity(h)
470
+ h = self.conv_out(h)
471
+ # print(f'end feat={h.shape}')
472
+ if return_hidden_states:
473
+ return h, hidden_states
474
+ else:
475
+ return h
476
+
477
+
478
+ class Decoder(nn.Module):
479
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
480
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
481
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
482
+ attn_type="vanilla", **ignorekwargs):
483
+ super().__init__()
484
+ if use_linear_attn: attn_type = "linear"
485
+ self.ch = ch
486
+ self.temb_ch = 0
487
+ self.num_resolutions = len(ch_mult)
488
+ self.num_res_blocks = num_res_blocks
489
+ self.resolution = resolution
490
+ self.in_channels = in_channels
491
+ self.give_pre_end = give_pre_end
492
+ self.tanh_out = tanh_out
493
+
494
+ # compute in_ch_mult, block_in and curr_res at lowest res
495
+ in_ch_mult = (1,)+tuple(ch_mult)
496
+ block_in = ch*ch_mult[self.num_resolutions-1]
497
+ curr_res = resolution // 2**(self.num_resolutions-1)
498
+ self.z_shape = (1,z_channels,curr_res,curr_res)
499
+ print("AE working on z of shape {} = {} dimensions.".format(
500
+ self.z_shape, np.prod(self.z_shape)))
501
+
502
+ # z to block_in
503
+ self.conv_in = torch.nn.Conv2d(z_channels,
504
+ block_in,
505
+ kernel_size=3,
506
+ stride=1,
507
+ padding=1)
508
+
509
+ # middle
510
+ self.mid = nn.Module()
511
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
512
+ out_channels=block_in,
513
+ temb_channels=self.temb_ch,
514
+ dropout=dropout)
515
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
516
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
517
+ out_channels=block_in,
518
+ temb_channels=self.temb_ch,
519
+ dropout=dropout)
520
+
521
+ # upsampling
522
+ self.up = nn.ModuleList()
523
+ for i_level in reversed(range(self.num_resolutions)):
524
+ block = nn.ModuleList()
525
+ attn = nn.ModuleList()
526
+ block_out = ch*ch_mult[i_level]
527
+ for i_block in range(self.num_res_blocks+1):
528
+ block.append(ResnetBlock(in_channels=block_in,
529
+ out_channels=block_out,
530
+ temb_channels=self.temb_ch,
531
+ dropout=dropout))
532
+ block_in = block_out
533
+ if curr_res in attn_resolutions:
534
+ attn.append(make_attn(block_in, attn_type=attn_type))
535
+ up = nn.Module()
536
+ up.block = block
537
+ up.attn = attn
538
+ if i_level != 0:
539
+ up.upsample = Upsample(block_in, resamp_with_conv)
540
+ curr_res = curr_res * 2
541
+ self.up.insert(0, up) # prepend to get consistent order
542
+
543
+ # end
544
+ self.norm_out = Normalize(block_in)
545
+ self.conv_out = torch.nn.Conv2d(block_in,
546
+ out_ch,
547
+ kernel_size=3,
548
+ stride=1,
549
+ padding=1)
550
+
551
+ def forward(self, z):
552
+ #assert z.shape[1:] == self.z_shape[1:]
553
+ self.last_z_shape = z.shape
554
+
555
+ # print(f'decoder-input={z.shape}')
556
+ # timestep embedding
557
+ temb = None
558
+
559
+ # z to block_in
560
+ h = self.conv_in(z)
561
+ # print(f'decoder-conv in feat={h.shape}')
562
+
563
+ # middle
564
+ h = self.mid.block_1(h, temb)
565
+ h = self.mid.attn_1(h)
566
+ h = self.mid.block_2(h, temb)
567
+ # print(f'decoder-mid feat={h.shape}')
568
+
569
+ # upsampling
570
+ for i_level in reversed(range(self.num_resolutions)):
571
+ for i_block in range(self.num_res_blocks+1):
572
+ h = self.up[i_level].block[i_block](h, temb)
573
+ if len(self.up[i_level].attn) > 0:
574
+ h = self.up[i_level].attn[i_block](h)
575
+ # print(f'decoder-up feat={h.shape}')
576
+ if i_level != 0:
577
+ h = self.up[i_level].upsample(h)
578
+ # print(f'decoder-upsample feat={h.shape}')
579
+
580
+ # end
581
+ if self.give_pre_end:
582
+ return h
583
+
584
+ h = self.norm_out(h)
585
+ h = nonlinearity(h)
586
+ h = self.conv_out(h)
587
+ # print(f'decoder-conv_out feat={h.shape}')
588
+ if self.tanh_out:
589
+ h = torch.tanh(h)
590
+ return h
591
+
592
+
593
+ class SimpleDecoder(nn.Module):
594
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
595
+ super().__init__()
596
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
597
+ ResnetBlock(in_channels=in_channels,
598
+ out_channels=2 * in_channels,
599
+ temb_channels=0, dropout=0.0),
600
+ ResnetBlock(in_channels=2 * in_channels,
601
+ out_channels=4 * in_channels,
602
+ temb_channels=0, dropout=0.0),
603
+ ResnetBlock(in_channels=4 * in_channels,
604
+ out_channels=2 * in_channels,
605
+ temb_channels=0, dropout=0.0),
606
+ nn.Conv2d(2*in_channels, in_channels, 1),
607
+ Upsample(in_channels, with_conv=True)])
608
+ # end
609
+ self.norm_out = Normalize(in_channels)
610
+ self.conv_out = torch.nn.Conv2d(in_channels,
611
+ out_channels,
612
+ kernel_size=3,
613
+ stride=1,
614
+ padding=1)
615
+
616
+ def forward(self, x):
617
+ for i, layer in enumerate(self.model):
618
+ if i in [1,2,3]:
619
+ x = layer(x, None)
620
+ else:
621
+ x = layer(x)
622
+
623
+ h = self.norm_out(x)
624
+ h = nonlinearity(h)
625
+ x = self.conv_out(h)
626
+ return x
627
+
628
+
629
+ class UpsampleDecoder(nn.Module):
630
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
631
+ ch_mult=(2,2), dropout=0.0):
632
+ super().__init__()
633
+ # upsampling
634
+ self.temb_ch = 0
635
+ self.num_resolutions = len(ch_mult)
636
+ self.num_res_blocks = num_res_blocks
637
+ block_in = in_channels
638
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
639
+ self.res_blocks = nn.ModuleList()
640
+ self.upsample_blocks = nn.ModuleList()
641
+ for i_level in range(self.num_resolutions):
642
+ res_block = []
643
+ block_out = ch * ch_mult[i_level]
644
+ for i_block in range(self.num_res_blocks + 1):
645
+ res_block.append(ResnetBlock(in_channels=block_in,
646
+ out_channels=block_out,
647
+ temb_channels=self.temb_ch,
648
+ dropout=dropout))
649
+ block_in = block_out
650
+ self.res_blocks.append(nn.ModuleList(res_block))
651
+ if i_level != self.num_resolutions - 1:
652
+ self.upsample_blocks.append(Upsample(block_in, True))
653
+ curr_res = curr_res * 2
654
+
655
+ # end
656
+ self.norm_out = Normalize(block_in)
657
+ self.conv_out = torch.nn.Conv2d(block_in,
658
+ out_channels,
659
+ kernel_size=3,
660
+ stride=1,
661
+ padding=1)
662
+
663
+ def forward(self, x):
664
+ # upsampling
665
+ h = x
666
+ for k, i_level in enumerate(range(self.num_resolutions)):
667
+ for i_block in range(self.num_res_blocks + 1):
668
+ h = self.res_blocks[i_level][i_block](h, None)
669
+ if i_level != self.num_resolutions - 1:
670
+ h = self.upsample_blocks[k](h)
671
+ h = self.norm_out(h)
672
+ h = nonlinearity(h)
673
+ h = self.conv_out(h)
674
+ return h
675
+
676
+
677
+ class LatentRescaler(nn.Module):
678
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
679
+ super().__init__()
680
+ # residual block, interpolate, residual block
681
+ self.factor = factor
682
+ self.conv_in = nn.Conv2d(in_channels,
683
+ mid_channels,
684
+ kernel_size=3,
685
+ stride=1,
686
+ padding=1)
687
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
688
+ out_channels=mid_channels,
689
+ temb_channels=0,
690
+ dropout=0.0) for _ in range(depth)])
691
+ self.attn = AttnBlock(mid_channels)
692
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
693
+ out_channels=mid_channels,
694
+ temb_channels=0,
695
+ dropout=0.0) for _ in range(depth)])
696
+
697
+ self.conv_out = nn.Conv2d(mid_channels,
698
+ out_channels,
699
+ kernel_size=1,
700
+ )
701
+
702
+ def forward(self, x):
703
+ x = self.conv_in(x)
704
+ for block in self.res_block1:
705
+ x = block(x, None)
706
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
707
+ x = self.attn(x)
708
+ for block in self.res_block2:
709
+ x = block(x, None)
710
+ x = self.conv_out(x)
711
+ return x
712
+
713
+
714
+ class MergedRescaleEncoder(nn.Module):
715
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
716
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
717
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
718
+ super().__init__()
719
+ intermediate_chn = ch * ch_mult[-1]
720
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
721
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
722
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
723
+ out_ch=None)
724
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
725
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
726
+
727
+ def forward(self, x):
728
+ x = self.encoder(x)
729
+ x = self.rescaler(x)
730
+ return x
731
+
732
+
733
+ class MergedRescaleDecoder(nn.Module):
734
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
735
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
736
+ super().__init__()
737
+ tmp_chn = z_channels*ch_mult[-1]
738
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
739
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
740
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
741
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
742
+ out_channels=tmp_chn, depth=rescale_module_depth)
743
+
744
+ def forward(self, x):
745
+ x = self.rescaler(x)
746
+ x = self.decoder(x)
747
+ return x
748
+
749
+
750
+ class Upsampler(nn.Module):
751
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
752
+ super().__init__()
753
+ assert out_size >= in_size
754
+ num_blocks = int(np.log2(out_size//in_size))+1
755
+ factor_up = 1.+ (out_size % in_size)
756
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
757
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
758
+ out_channels=in_channels)
759
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
760
+ attn_resolutions=[], in_channels=None, ch=in_channels,
761
+ ch_mult=[ch_mult for _ in range(num_blocks)])
762
+
763
+ def forward(self, x):
764
+ x = self.rescaler(x)
765
+ x = self.decoder(x)
766
+ return x
767
+
768
+
769
+ class Resize(nn.Module):
770
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
771
+ super().__init__()
772
+ self.with_conv = learned
773
+ self.mode = mode
774
+ if self.with_conv:
775
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
776
+ raise NotImplementedError()
777
+ assert in_channels is not None
778
+ # no asymmetric padding in torch conv, must do it ourselves
779
+ self.conv = torch.nn.Conv2d(in_channels,
780
+ in_channels,
781
+ kernel_size=4,
782
+ stride=2,
783
+ padding=1)
784
+
785
+ def forward(self, x, scale_factor=1.0):
786
+ if scale_factor==1.0:
787
+ return x
788
+ else:
789
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
790
+ return x
791
+
792
+ class FirstStagePostProcessor(nn.Module):
793
+
794
+ def __init__(self, ch_mult:list, in_channels,
795
+ pretrained_model:nn.Module=None,
796
+ reshape=False,
797
+ n_channels=None,
798
+ dropout=0.,
799
+ pretrained_config=None):
800
+ super().__init__()
801
+ if pretrained_config is None:
802
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
803
+ self.pretrained_model = pretrained_model
804
+ else:
805
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
806
+ self.instantiate_pretrained(pretrained_config)
807
+
808
+ self.do_reshape = reshape
809
+
810
+ if n_channels is None:
811
+ n_channels = self.pretrained_model.encoder.ch
812
+
813
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
814
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
815
+ stride=1,padding=1)
816
+
817
+ blocks = []
818
+ downs = []
819
+ ch_in = n_channels
820
+ for m in ch_mult:
821
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
822
+ ch_in = m * n_channels
823
+ downs.append(Downsample(ch_in, with_conv=False))
824
+
825
+ self.model = nn.ModuleList(blocks)
826
+ self.downsampler = nn.ModuleList(downs)
827
+
828
+
829
+ def instantiate_pretrained(self, config):
830
+ model = instantiate_from_config(config)
831
+ self.pretrained_model = model.eval()
832
+ # self.pretrained_model.train = False
833
+ for param in self.pretrained_model.parameters():
834
+ param.requires_grad = False
835
+
836
+
837
+ @torch.no_grad()
838
+ def encode_with_pretrained(self,x):
839
+ c = self.pretrained_model.encode(x)
840
+ if isinstance(c, DiagonalGaussianDistribution):
841
+ c = c.mode()
842
+ return c
843
+
844
+ def forward(self,x):
845
+ z_fs = self.encode_with_pretrained(x)
846
+ z = self.proj_norm(z_fs)
847
+ z = self.proj(z)
848
+ z = nonlinearity(z)
849
+
850
+ for submodel, downmodel in zip(self.model,self.downsampler):
851
+ z = submodel(z,temb=None)
852
+ z = downmodel(z)
853
+
854
+ if self.do_reshape:
855
+ z = rearrange(z,'b c h w -> b (h w) c')
856
+ return z
lvdm/modules/networks/openaimodel3d.py ADDED
@@ -0,0 +1,603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ from abc import abstractmethod
3
+ import torch
4
+ import torch.nn as nn
5
+ from einops import rearrange
6
+ import torch.nn.functional as F
7
+ from lvdm.models.utils_diffusion import timestep_embedding
8
+ from lvdm.common import checkpoint
9
+ from lvdm.basics import (
10
+ zero_module,
11
+ conv_nd,
12
+ linear,
13
+ avg_pool_nd,
14
+ normalization
15
+ )
16
+ from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
17
+
18
+
19
+ class TimestepBlock(nn.Module):
20
+ """
21
+ Any module where forward() takes timestep embeddings as a second argument.
22
+ """
23
+ @abstractmethod
24
+ def forward(self, x, emb):
25
+ """
26
+ Apply the module to `x` given `emb` timestep embeddings.
27
+ """
28
+
29
+
30
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
31
+ """
32
+ A sequential module that passes timestep embeddings to the children that
33
+ support it as an extra input.
34
+ """
35
+
36
+ def forward(self, x, emb, context=None, batch_size=None):
37
+ for layer in self:
38
+ if isinstance(layer, TimestepBlock):
39
+ x = layer(x, emb, batch_size=batch_size)
40
+ elif isinstance(layer, SpatialTransformer):
41
+ x = layer(x, context)
42
+ elif isinstance(layer, TemporalTransformer):
43
+ x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
44
+ x = layer(x, context)
45
+ x = rearrange(x, 'b c f h w -> (b f) c h w')
46
+ else:
47
+ x = layer(x)
48
+ return x
49
+
50
+
51
+ class Downsample(nn.Module):
52
+ """
53
+ A downsampling layer with an optional convolution.
54
+ :param channels: channels in the inputs and outputs.
55
+ :param use_conv: a bool determining if a convolution is applied.
56
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
57
+ downsampling occurs in the inner-two dimensions.
58
+ """
59
+
60
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
61
+ super().__init__()
62
+ self.channels = channels
63
+ self.out_channels = out_channels or channels
64
+ self.use_conv = use_conv
65
+ self.dims = dims
66
+ stride = 2 if dims != 3 else (1, 2, 2)
67
+ if use_conv:
68
+ self.op = conv_nd(
69
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
70
+ )
71
+ else:
72
+ assert self.channels == self.out_channels
73
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
74
+
75
+ def forward(self, x):
76
+ assert x.shape[1] == self.channels
77
+ return self.op(x)
78
+
79
+
80
+ class Upsample(nn.Module):
81
+ """
82
+ An upsampling layer with an optional convolution.
83
+ :param channels: channels in the inputs and outputs.
84
+ :param use_conv: a bool determining if a convolution is applied.
85
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
86
+ upsampling occurs in the inner-two dimensions.
87
+ """
88
+
89
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
90
+ super().__init__()
91
+ self.channels = channels
92
+ self.out_channels = out_channels or channels
93
+ self.use_conv = use_conv
94
+ self.dims = dims
95
+ if use_conv:
96
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
97
+
98
+ def forward(self, x):
99
+ assert x.shape[1] == self.channels
100
+ if self.dims == 3:
101
+ x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
102
+ else:
103
+ x = F.interpolate(x, scale_factor=2, mode='nearest')
104
+ if self.use_conv:
105
+ x = self.conv(x)
106
+ return x
107
+
108
+
109
+ class ResBlock(TimestepBlock):
110
+ """
111
+ A residual block that can optionally change the number of channels.
112
+ :param channels: the number of input channels.
113
+ :param emb_channels: the number of timestep embedding channels.
114
+ :param dropout: the rate of dropout.
115
+ :param out_channels: if specified, the number of out channels.
116
+ :param use_conv: if True and out_channels is specified, use a spatial
117
+ convolution instead of a smaller 1x1 convolution to change the
118
+ channels in the skip connection.
119
+ :param dims: determines if the signal is 1D, 2D, or 3D.
120
+ :param up: if True, use this block for upsampling.
121
+ :param down: if True, use this block for downsampling.
122
+ :param use_temporal_conv: if True, use the temporal convolution.
123
+ :param use_image_dataset: if True, the temporal parameters will not be optimized.
124
+ """
125
+
126
+ def __init__(
127
+ self,
128
+ channels,
129
+ emb_channels,
130
+ dropout,
131
+ out_channels=None,
132
+ use_scale_shift_norm=False,
133
+ dims=2,
134
+ use_checkpoint=False,
135
+ use_conv=False,
136
+ up=False,
137
+ down=False,
138
+ use_temporal_conv=False,
139
+ tempspatial_aware=False
140
+ ):
141
+ super().__init__()
142
+ self.channels = channels
143
+ self.emb_channels = emb_channels
144
+ self.dropout = dropout
145
+ self.out_channels = out_channels or channels
146
+ self.use_conv = use_conv
147
+ self.use_checkpoint = use_checkpoint
148
+ self.use_scale_shift_norm = use_scale_shift_norm
149
+ self.use_temporal_conv = use_temporal_conv
150
+
151
+ self.in_layers = nn.Sequential(
152
+ normalization(channels),
153
+ nn.SiLU(),
154
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
155
+ )
156
+
157
+ self.updown = up or down
158
+
159
+ if up:
160
+ self.h_upd = Upsample(channels, False, dims)
161
+ self.x_upd = Upsample(channels, False, dims)
162
+ elif down:
163
+ self.h_upd = Downsample(channels, False, dims)
164
+ self.x_upd = Downsample(channels, False, dims)
165
+ else:
166
+ self.h_upd = self.x_upd = nn.Identity()
167
+
168
+ self.emb_layers = nn.Sequential(
169
+ nn.SiLU(),
170
+ nn.Linear(
171
+ emb_channels,
172
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
173
+ ),
174
+ )
175
+ self.out_layers = nn.Sequential(
176
+ normalization(self.out_channels),
177
+ nn.SiLU(),
178
+ nn.Dropout(p=dropout),
179
+ zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
180
+ )
181
+
182
+ if self.out_channels == channels:
183
+ self.skip_connection = nn.Identity()
184
+ elif use_conv:
185
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
186
+ else:
187
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
188
+
189
+ if self.use_temporal_conv:
190
+ self.temopral_conv = TemporalConvBlock(
191
+ self.out_channels,
192
+ self.out_channels,
193
+ dropout=0.1,
194
+ spatial_aware=tempspatial_aware
195
+ )
196
+
197
+ def forward(self, x, emb, batch_size=None):
198
+ """
199
+ Apply the block to a Tensor, conditioned on a timestep embedding.
200
+ :param x: an [N x C x ...] Tensor of features.
201
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
202
+ :return: an [N x C x ...] Tensor of outputs.
203
+ """
204
+ input_tuple = (x, emb)
205
+ if batch_size:
206
+ forward_batchsize = partial(self._forward, batch_size=batch_size)
207
+ return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
208
+ return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
209
+
210
+ def _forward(self, x, emb, batch_size=None):
211
+ if self.updown:
212
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
213
+ h = in_rest(x)
214
+ h = self.h_upd(h)
215
+ x = self.x_upd(x)
216
+ h = in_conv(h)
217
+ else:
218
+ h = self.in_layers(x)
219
+ emb_out = self.emb_layers(emb).type(h.dtype)
220
+ while len(emb_out.shape) < len(h.shape):
221
+ emb_out = emb_out[..., None]
222
+ if self.use_scale_shift_norm:
223
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
224
+ scale, shift = torch.chunk(emb_out, 2, dim=1)
225
+ h = out_norm(h) * (1 + scale) + shift
226
+ h = out_rest(h)
227
+ else:
228
+ h = h + emb_out
229
+ h = self.out_layers(h)
230
+ h = self.skip_connection(x) + h
231
+
232
+ if self.use_temporal_conv and batch_size:
233
+ h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
234
+ h = self.temopral_conv(h)
235
+ h = rearrange(h, 'b c t h w -> (b t) c h w')
236
+ return h
237
+
238
+
239
+ class TemporalConvBlock(nn.Module):
240
+ """
241
+ Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
242
+ """
243
+ def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
244
+ super(TemporalConvBlock, self).__init__()
245
+ if out_channels is None:
246
+ out_channels = in_channels
247
+ self.in_channels = in_channels
248
+ self.out_channels = out_channels
249
+ th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1)
250
+ th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0)
251
+ tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3)
252
+ tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1)
253
+
254
+ # conv layers
255
+ self.conv1 = nn.Sequential(
256
+ nn.GroupNorm(32, in_channels), nn.SiLU(),
257
+ nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape))
258
+ self.conv2 = nn.Sequential(
259
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
260
+ nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
261
+ self.conv3 = nn.Sequential(
262
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
263
+ nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape))
264
+ self.conv4 = nn.Sequential(
265
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
266
+ nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
267
+
268
+ # zero out the last layer params,so the conv block is identity
269
+ nn.init.zeros_(self.conv4[-1].weight)
270
+ nn.init.zeros_(self.conv4[-1].bias)
271
+
272
+ def forward(self, x):
273
+ identity = x
274
+ x = self.conv1(x)
275
+ x = self.conv2(x)
276
+ x = self.conv3(x)
277
+ x = self.conv4(x)
278
+
279
+ return identity + x
280
+
281
+ class UNetModel(nn.Module):
282
+ """
283
+ The full UNet model with attention and timestep embedding.
284
+ :param in_channels: in_channels in the input Tensor.
285
+ :param model_channels: base channel count for the model.
286
+ :param out_channels: channels in the output Tensor.
287
+ :param num_res_blocks: number of residual blocks per downsample.
288
+ :param attention_resolutions: a collection of downsample rates at which
289
+ attention will take place. May be a set, list, or tuple.
290
+ For example, if this contains 4, then at 4x downsampling, attention
291
+ will be used.
292
+ :param dropout: the dropout probability.
293
+ :param channel_mult: channel multiplier for each level of the UNet.
294
+ :param conv_resample: if True, use learned convolutions for upsampling and
295
+ downsampling.
296
+ :param dims: determines if the signal is 1D, 2D, or 3D.
297
+ :param num_classes: if specified (as an int), then this model will be
298
+ class-conditional with `num_classes` classes.
299
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
300
+ :param num_heads: the number of attention heads in each attention layer.
301
+ :param num_heads_channels: if specified, ignore num_heads and instead use
302
+ a fixed channel width per attention head.
303
+ :param num_heads_upsample: works with num_heads to set a different number
304
+ of heads for upsampling. Deprecated.
305
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
306
+ :param resblock_updown: use residual blocks for up/downsampling.
307
+ :param use_new_attention_order: use a different attention pattern for potentially
308
+ increased efficiency.
309
+ """
310
+
311
+ def __init__(self,
312
+ in_channels,
313
+ model_channels,
314
+ out_channels,
315
+ num_res_blocks,
316
+ attention_resolutions,
317
+ dropout=0.0,
318
+ channel_mult=(1, 2, 4, 8),
319
+ conv_resample=True,
320
+ dims=2,
321
+ context_dim=None,
322
+ use_scale_shift_norm=False,
323
+ resblock_updown=False,
324
+ num_heads=-1,
325
+ num_head_channels=-1,
326
+ transformer_depth=1,
327
+ use_linear=False,
328
+ use_checkpoint=False,
329
+ temporal_conv=False,
330
+ tempspatial_aware=False,
331
+ temporal_attention=True,
332
+ use_relative_position=True,
333
+ use_causal_attention=False,
334
+ temporal_length=None,
335
+ use_fp16=False,
336
+ addition_attention=False,
337
+ temporal_selfatt_only=True,
338
+ image_cross_attention=False,
339
+ image_cross_attention_scale_learnable=False,
340
+ default_fs=4,
341
+ fs_condition=False,
342
+ ):
343
+ super(UNetModel, self).__init__()
344
+ if num_heads == -1:
345
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
346
+ if num_head_channels == -1:
347
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
348
+
349
+ self.in_channels = in_channels
350
+ self.model_channels = model_channels
351
+ self.out_channels = out_channels
352
+ self.num_res_blocks = num_res_blocks
353
+ self.attention_resolutions = attention_resolutions
354
+ self.dropout = dropout
355
+ self.channel_mult = channel_mult
356
+ self.conv_resample = conv_resample
357
+ self.temporal_attention = temporal_attention
358
+ time_embed_dim = model_channels * 4
359
+ self.use_checkpoint = use_checkpoint
360
+ self.dtype = torch.float16 if use_fp16 else torch.float32
361
+ temporal_self_att_only = True
362
+ self.addition_attention = addition_attention
363
+ self.temporal_length = temporal_length
364
+ self.image_cross_attention = image_cross_attention
365
+ self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
366
+ self.default_fs = default_fs
367
+ self.fs_condition = fs_condition
368
+
369
+ ## Time embedding blocks
370
+ self.time_embed = nn.Sequential(
371
+ linear(model_channels, time_embed_dim),
372
+ nn.SiLU(),
373
+ linear(time_embed_dim, time_embed_dim),
374
+ )
375
+ if fs_condition:
376
+ self.fps_embedding = nn.Sequential(
377
+ linear(model_channels, time_embed_dim),
378
+ nn.SiLU(),
379
+ linear(time_embed_dim, time_embed_dim),
380
+ )
381
+ nn.init.zeros_(self.fps_embedding[-1].weight)
382
+ nn.init.zeros_(self.fps_embedding[-1].bias)
383
+ ## Input Block
384
+ self.input_blocks = nn.ModuleList(
385
+ [
386
+ TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
387
+ ]
388
+ )
389
+ if self.addition_attention:
390
+ self.init_attn=TimestepEmbedSequential(
391
+ TemporalTransformer(
392
+ model_channels,
393
+ n_heads=8,
394
+ d_head=num_head_channels,
395
+ depth=transformer_depth,
396
+ context_dim=context_dim,
397
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
398
+ causal_attention=False, relative_position=use_relative_position,
399
+ temporal_length=temporal_length))
400
+
401
+ input_block_chans = [model_channels]
402
+ ch = model_channels
403
+ ds = 1
404
+ for level, mult in enumerate(channel_mult):
405
+ for _ in range(num_res_blocks):
406
+ layers = [
407
+ ResBlock(ch, time_embed_dim, dropout,
408
+ out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
409
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
410
+ use_temporal_conv=temporal_conv
411
+ )
412
+ ]
413
+ ch = mult * model_channels
414
+ if ds in attention_resolutions:
415
+ if num_head_channels == -1:
416
+ dim_head = ch // num_heads
417
+ else:
418
+ num_heads = ch // num_head_channels
419
+ dim_head = num_head_channels
420
+ layers.append(
421
+ SpatialTransformer(ch, num_heads, dim_head,
422
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
423
+ use_checkpoint=use_checkpoint, disable_self_attn=False,
424
+ video_length=temporal_length, image_cross_attention=self.image_cross_attention,
425
+ image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
426
+ )
427
+ )
428
+ if self.temporal_attention:
429
+ layers.append(
430
+ TemporalTransformer(ch, num_heads, dim_head,
431
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
432
+ use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
433
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
434
+ temporal_length=temporal_length
435
+ )
436
+ )
437
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
438
+ input_block_chans.append(ch)
439
+ if level != len(channel_mult) - 1:
440
+ out_ch = ch
441
+ self.input_blocks.append(
442
+ TimestepEmbedSequential(
443
+ ResBlock(ch, time_embed_dim, dropout,
444
+ out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
445
+ use_scale_shift_norm=use_scale_shift_norm,
446
+ down=True
447
+ )
448
+ if resblock_updown
449
+ else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
450
+ )
451
+ )
452
+ ch = out_ch
453
+ input_block_chans.append(ch)
454
+ ds *= 2
455
+
456
+ if num_head_channels == -1:
457
+ dim_head = ch // num_heads
458
+ else:
459
+ num_heads = ch // num_head_channels
460
+ dim_head = num_head_channels
461
+ layers = [
462
+ ResBlock(ch, time_embed_dim, dropout,
463
+ dims=dims, use_checkpoint=use_checkpoint,
464
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
465
+ use_temporal_conv=temporal_conv
466
+ ),
467
+ SpatialTransformer(ch, num_heads, dim_head,
468
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
469
+ use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
470
+ image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
471
+ )
472
+ ]
473
+ if self.temporal_attention:
474
+ layers.append(
475
+ TemporalTransformer(ch, num_heads, dim_head,
476
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
477
+ use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
478
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
479
+ temporal_length=temporal_length
480
+ )
481
+ )
482
+ layers.append(
483
+ ResBlock(ch, time_embed_dim, dropout,
484
+ dims=dims, use_checkpoint=use_checkpoint,
485
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
486
+ use_temporal_conv=temporal_conv
487
+ )
488
+ )
489
+
490
+ ## Middle Block
491
+ self.middle_block = TimestepEmbedSequential(*layers)
492
+
493
+ ## Output Block
494
+ self.output_blocks = nn.ModuleList([])
495
+ for level, mult in list(enumerate(channel_mult))[::-1]:
496
+ for i in range(num_res_blocks + 1):
497
+ ich = input_block_chans.pop()
498
+ layers = [
499
+ ResBlock(ch + ich, time_embed_dim, dropout,
500
+ out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
501
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
502
+ use_temporal_conv=temporal_conv
503
+ )
504
+ ]
505
+ ch = model_channels * mult
506
+ if ds in attention_resolutions:
507
+ if num_head_channels == -1:
508
+ dim_head = ch // num_heads
509
+ else:
510
+ num_heads = ch // num_head_channels
511
+ dim_head = num_head_channels
512
+ layers.append(
513
+ SpatialTransformer(ch, num_heads, dim_head,
514
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
515
+ use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
516
+ image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
517
+ )
518
+ )
519
+ if self.temporal_attention:
520
+ layers.append(
521
+ TemporalTransformer(ch, num_heads, dim_head,
522
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
523
+ use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
524
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
525
+ temporal_length=temporal_length
526
+ )
527
+ )
528
+ if level and i == num_res_blocks:
529
+ out_ch = ch
530
+ layers.append(
531
+ ResBlock(ch, time_embed_dim, dropout,
532
+ out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
533
+ use_scale_shift_norm=use_scale_shift_norm,
534
+ up=True
535
+ )
536
+ if resblock_updown
537
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
538
+ )
539
+ ds //= 2
540
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
541
+
542
+ self.out = nn.Sequential(
543
+ normalization(ch),
544
+ nn.SiLU(),
545
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
546
+ )
547
+
548
+ def forward(self, x, timesteps, context=None, features_adapter=None, fs=None, **kwargs):
549
+ b,_,t,_,_ = x.shape
550
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype)
551
+ emb = self.time_embed(t_emb)
552
+
553
+ ## repeat t times for context [(b t) 77 768] & time embedding
554
+ ## check if we use per-frame image conditioning
555
+ _, l_context, _ = context.shape
556
+ if l_context == 77 + t*16: ## !!! HARD CODE here
557
+ context_text, context_img = context[:,:77,:], context[:,77:,:]
558
+ context_text = context_text.repeat_interleave(repeats=t, dim=0)
559
+ context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
560
+ context = torch.cat([context_text, context_img], dim=1)
561
+ else:
562
+ context = context.repeat_interleave(repeats=t, dim=0)
563
+ emb = emb.repeat_interleave(repeats=t, dim=0)
564
+
565
+ ## always in shape (b t) c h w, except for temporal layer
566
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
567
+
568
+ ## combine emb
569
+ if self.fs_condition:
570
+ if fs is None:
571
+ fs = torch.tensor(
572
+ [self.default_fs] * b, dtype=torch.long, device=x.device)
573
+ fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype)
574
+
575
+ fs_embed = self.fps_embedding(fs_emb)
576
+ fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
577
+ emb = emb + fs_embed
578
+
579
+ h = x.type(self.dtype)
580
+ adapter_idx = 0
581
+ hs = []
582
+ for id, module in enumerate(self.input_blocks):
583
+ h = module(h, emb, context=context, batch_size=b)
584
+ if id ==0 and self.addition_attention:
585
+ h = self.init_attn(h, emb, context=context, batch_size=b)
586
+ ## plug-in adapter features
587
+ if ((id+1)%3 == 0) and features_adapter is not None:
588
+ h = h + features_adapter[adapter_idx]
589
+ adapter_idx += 1
590
+ hs.append(h)
591
+ if features_adapter is not None:
592
+ assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
593
+
594
+ h = self.middle_block(h, emb, context=context, batch_size=b)
595
+ for module in self.output_blocks:
596
+ h = torch.cat([h, hs.pop()], dim=1)
597
+ h = module(h, emb, context=context, batch_size=b)
598
+ h = h.type(x.dtype)
599
+ y = self.out(h)
600
+
601
+ # reshape back to (b c t h w)
602
+ y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
603
+ return y
lvdm/modules/x_transformer.py ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
2
+ from functools import partial
3
+ from inspect import isfunction
4
+ from collections import namedtuple
5
+ from einops import rearrange, repeat
6
+ import torch
7
+ from torch import nn, einsum
8
+ import torch.nn.functional as F
9
+
10
+ # constants
11
+ DEFAULT_DIM_HEAD = 64
12
+
13
+ Intermediates = namedtuple('Intermediates', [
14
+ 'pre_softmax_attn',
15
+ 'post_softmax_attn'
16
+ ])
17
+
18
+ LayerIntermediates = namedtuple('Intermediates', [
19
+ 'hiddens',
20
+ 'attn_intermediates'
21
+ ])
22
+
23
+
24
+ class AbsolutePositionalEmbedding(nn.Module):
25
+ def __init__(self, dim, max_seq_len):
26
+ super().__init__()
27
+ self.emb = nn.Embedding(max_seq_len, dim)
28
+ self.init_()
29
+
30
+ def init_(self):
31
+ nn.init.normal_(self.emb.weight, std=0.02)
32
+
33
+ def forward(self, x):
34
+ n = torch.arange(x.shape[1], device=x.device)
35
+ return self.emb(n)[None, :, :]
36
+
37
+
38
+ class FixedPositionalEmbedding(nn.Module):
39
+ def __init__(self, dim):
40
+ super().__init__()
41
+ inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
42
+ self.register_buffer('inv_freq', inv_freq)
43
+
44
+ def forward(self, x, seq_dim=1, offset=0):
45
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
46
+ sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
47
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
48
+ return emb[None, :, :]
49
+
50
+
51
+ # helpers
52
+
53
+ def exists(val):
54
+ return val is not None
55
+
56
+
57
+ def default(val, d):
58
+ if exists(val):
59
+ return val
60
+ return d() if isfunction(d) else d
61
+
62
+
63
+ def always(val):
64
+ def inner(*args, **kwargs):
65
+ return val
66
+ return inner
67
+
68
+
69
+ def not_equals(val):
70
+ def inner(x):
71
+ return x != val
72
+ return inner
73
+
74
+
75
+ def equals(val):
76
+ def inner(x):
77
+ return x == val
78
+ return inner
79
+
80
+
81
+ def max_neg_value(tensor):
82
+ return -torch.finfo(tensor.dtype).max
83
+
84
+
85
+ # keyword argument helpers
86
+
87
+ def pick_and_pop(keys, d):
88
+ values = list(map(lambda key: d.pop(key), keys))
89
+ return dict(zip(keys, values))
90
+
91
+
92
+ def group_dict_by_key(cond, d):
93
+ return_val = [dict(), dict()]
94
+ for key in d.keys():
95
+ match = bool(cond(key))
96
+ ind = int(not match)
97
+ return_val[ind][key] = d[key]
98
+ return (*return_val,)
99
+
100
+
101
+ def string_begins_with(prefix, str):
102
+ return str.startswith(prefix)
103
+
104
+
105
+ def group_by_key_prefix(prefix, d):
106
+ return group_dict_by_key(partial(string_begins_with, prefix), d)
107
+
108
+
109
+ def groupby_prefix_and_trim(prefix, d):
110
+ kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
111
+ kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
112
+ return kwargs_without_prefix, kwargs
113
+
114
+
115
+ # classes
116
+ class Scale(nn.Module):
117
+ def __init__(self, value, fn):
118
+ super().__init__()
119
+ self.value = value
120
+ self.fn = fn
121
+
122
+ def forward(self, x, **kwargs):
123
+ x, *rest = self.fn(x, **kwargs)
124
+ return (x * self.value, *rest)
125
+
126
+
127
+ class Rezero(nn.Module):
128
+ def __init__(self, fn):
129
+ super().__init__()
130
+ self.fn = fn
131
+ self.g = nn.Parameter(torch.zeros(1))
132
+
133
+ def forward(self, x, **kwargs):
134
+ x, *rest = self.fn(x, **kwargs)
135
+ return (x * self.g, *rest)
136
+
137
+
138
+ class ScaleNorm(nn.Module):
139
+ def __init__(self, dim, eps=1e-5):
140
+ super().__init__()
141
+ self.scale = dim ** -0.5
142
+ self.eps = eps
143
+ self.g = nn.Parameter(torch.ones(1))
144
+
145
+ def forward(self, x):
146
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
147
+ return x / norm.clamp(min=self.eps) * self.g
148
+
149
+
150
+ class RMSNorm(nn.Module):
151
+ def __init__(self, dim, eps=1e-8):
152
+ super().__init__()
153
+ self.scale = dim ** -0.5
154
+ self.eps = eps
155
+ self.g = nn.Parameter(torch.ones(dim))
156
+
157
+ def forward(self, x):
158
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
159
+ return x / norm.clamp(min=self.eps) * self.g
160
+
161
+
162
+ class Residual(nn.Module):
163
+ def forward(self, x, residual):
164
+ return x + residual
165
+
166
+
167
+ class GRUGating(nn.Module):
168
+ def __init__(self, dim):
169
+ super().__init__()
170
+ self.gru = nn.GRUCell(dim, dim)
171
+
172
+ def forward(self, x, residual):
173
+ gated_output = self.gru(
174
+ rearrange(x, 'b n d -> (b n) d'),
175
+ rearrange(residual, 'b n d -> (b n) d')
176
+ )
177
+
178
+ return gated_output.reshape_as(x)
179
+
180
+
181
+ # feedforward
182
+
183
+ class GEGLU(nn.Module):
184
+ def __init__(self, dim_in, dim_out):
185
+ super().__init__()
186
+ self.proj = nn.Linear(dim_in, dim_out * 2)
187
+
188
+ def forward(self, x):
189
+ x, gate = self.proj(x).chunk(2, dim=-1)
190
+ return x * F.gelu(gate)
191
+
192
+
193
+ class FeedForward(nn.Module):
194
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
195
+ super().__init__()
196
+ inner_dim = int(dim * mult)
197
+ dim_out = default(dim_out, dim)
198
+ project_in = nn.Sequential(
199
+ nn.Linear(dim, inner_dim),
200
+ nn.GELU()
201
+ ) if not glu else GEGLU(dim, inner_dim)
202
+
203
+ self.net = nn.Sequential(
204
+ project_in,
205
+ nn.Dropout(dropout),
206
+ nn.Linear(inner_dim, dim_out)
207
+ )
208
+
209
+ def forward(self, x):
210
+ return self.net(x)
211
+
212
+
213
+ # attention.
214
+ class Attention(nn.Module):
215
+ def __init__(
216
+ self,
217
+ dim,
218
+ dim_head=DEFAULT_DIM_HEAD,
219
+ heads=8,
220
+ causal=False,
221
+ mask=None,
222
+ talking_heads=False,
223
+ sparse_topk=None,
224
+ use_entmax15=False,
225
+ num_mem_kv=0,
226
+ dropout=0.,
227
+ on_attn=False
228
+ ):
229
+ super().__init__()
230
+ if use_entmax15:
231
+ raise NotImplementedError("Check out entmax activation instead of softmax activation!")
232
+ self.scale = dim_head ** -0.5
233
+ self.heads = heads
234
+ self.causal = causal
235
+ self.mask = mask
236
+
237
+ inner_dim = dim_head * heads
238
+
239
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
240
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
241
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
242
+ self.dropout = nn.Dropout(dropout)
243
+
244
+ # talking heads
245
+ self.talking_heads = talking_heads
246
+ if talking_heads:
247
+ self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
248
+ self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
249
+
250
+ # explicit topk sparse attention
251
+ self.sparse_topk = sparse_topk
252
+
253
+ # entmax
254
+ #self.attn_fn = entmax15 if use_entmax15 else F.softmax
255
+ self.attn_fn = F.softmax
256
+
257
+ # add memory key / values
258
+ self.num_mem_kv = num_mem_kv
259
+ if num_mem_kv > 0:
260
+ self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
261
+ self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
262
+
263
+ # attention on attention
264
+ self.attn_on_attn = on_attn
265
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
266
+
267
+ def forward(
268
+ self,
269
+ x,
270
+ context=None,
271
+ mask=None,
272
+ context_mask=None,
273
+ rel_pos=None,
274
+ sinusoidal_emb=None,
275
+ prev_attn=None,
276
+ mem=None
277
+ ):
278
+ b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
279
+ kv_input = default(context, x)
280
+
281
+ q_input = x
282
+ k_input = kv_input
283
+ v_input = kv_input
284
+
285
+ if exists(mem):
286
+ k_input = torch.cat((mem, k_input), dim=-2)
287
+ v_input = torch.cat((mem, v_input), dim=-2)
288
+
289
+ if exists(sinusoidal_emb):
290
+ # in shortformer, the query would start at a position offset depending on the past cached memory
291
+ offset = k_input.shape[-2] - q_input.shape[-2]
292
+ q_input = q_input + sinusoidal_emb(q_input, offset=offset)
293
+ k_input = k_input + sinusoidal_emb(k_input)
294
+
295
+ q = self.to_q(q_input)
296
+ k = self.to_k(k_input)
297
+ v = self.to_v(v_input)
298
+
299
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
300
+
301
+ input_mask = None
302
+ if any(map(exists, (mask, context_mask))):
303
+ q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
304
+ k_mask = q_mask if not exists(context) else context_mask
305
+ k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
306
+ q_mask = rearrange(q_mask, 'b i -> b () i ()')
307
+ k_mask = rearrange(k_mask, 'b j -> b () () j')
308
+ input_mask = q_mask * k_mask
309
+
310
+ if self.num_mem_kv > 0:
311
+ mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
312
+ k = torch.cat((mem_k, k), dim=-2)
313
+ v = torch.cat((mem_v, v), dim=-2)
314
+ if exists(input_mask):
315
+ input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
316
+
317
+ dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
318
+ mask_value = max_neg_value(dots)
319
+
320
+ if exists(prev_attn):
321
+ dots = dots + prev_attn
322
+
323
+ pre_softmax_attn = dots
324
+
325
+ if talking_heads:
326
+ dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
327
+
328
+ if exists(rel_pos):
329
+ dots = rel_pos(dots)
330
+
331
+ if exists(input_mask):
332
+ dots.masked_fill_(~input_mask, mask_value)
333
+ del input_mask
334
+
335
+ if self.causal:
336
+ i, j = dots.shape[-2:]
337
+ r = torch.arange(i, device=device)
338
+ mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
339
+ mask = F.pad(mask, (j - i, 0), value=False)
340
+ dots.masked_fill_(mask, mask_value)
341
+ del mask
342
+
343
+ if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
344
+ top, _ = dots.topk(self.sparse_topk, dim=-1)
345
+ vk = top[..., -1].unsqueeze(-1).expand_as(dots)
346
+ mask = dots < vk
347
+ dots.masked_fill_(mask, mask_value)
348
+ del mask
349
+
350
+ attn = self.attn_fn(dots, dim=-1)
351
+ post_softmax_attn = attn
352
+
353
+ attn = self.dropout(attn)
354
+
355
+ if talking_heads:
356
+ attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
357
+
358
+ out = einsum('b h i j, b h j d -> b h i d', attn, v)
359
+ out = rearrange(out, 'b h n d -> b n (h d)')
360
+
361
+ intermediates = Intermediates(
362
+ pre_softmax_attn=pre_softmax_attn,
363
+ post_softmax_attn=post_softmax_attn
364
+ )
365
+
366
+ return self.to_out(out), intermediates
367
+
368
+
369
+ class AttentionLayers(nn.Module):
370
+ def __init__(
371
+ self,
372
+ dim,
373
+ depth,
374
+ heads=8,
375
+ causal=False,
376
+ cross_attend=False,
377
+ only_cross=False,
378
+ use_scalenorm=False,
379
+ use_rmsnorm=False,
380
+ use_rezero=False,
381
+ rel_pos_num_buckets=32,
382
+ rel_pos_max_distance=128,
383
+ position_infused_attn=False,
384
+ custom_layers=None,
385
+ sandwich_coef=None,
386
+ par_ratio=None,
387
+ residual_attn=False,
388
+ cross_residual_attn=False,
389
+ macaron=False,
390
+ pre_norm=True,
391
+ gate_residual=False,
392
+ **kwargs
393
+ ):
394
+ super().__init__()
395
+ ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
396
+ attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
397
+
398
+ dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
399
+
400
+ self.dim = dim
401
+ self.depth = depth
402
+ self.layers = nn.ModuleList([])
403
+
404
+ self.has_pos_emb = position_infused_attn
405
+ self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
406
+ self.rotary_pos_emb = always(None)
407
+
408
+ assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
409
+ self.rel_pos = None
410
+
411
+ self.pre_norm = pre_norm
412
+
413
+ self.residual_attn = residual_attn
414
+ self.cross_residual_attn = cross_residual_attn
415
+
416
+ norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
417
+ norm_class = RMSNorm if use_rmsnorm else norm_class
418
+ norm_fn = partial(norm_class, dim)
419
+
420
+ norm_fn = nn.Identity if use_rezero else norm_fn
421
+ branch_fn = Rezero if use_rezero else None
422
+
423
+ if cross_attend and not only_cross:
424
+ default_block = ('a', 'c', 'f')
425
+ elif cross_attend and only_cross:
426
+ default_block = ('c', 'f')
427
+ else:
428
+ default_block = ('a', 'f')
429
+
430
+ if macaron:
431
+ default_block = ('f',) + default_block
432
+
433
+ if exists(custom_layers):
434
+ layer_types = custom_layers
435
+ elif exists(par_ratio):
436
+ par_depth = depth * len(default_block)
437
+ assert 1 < par_ratio <= par_depth, 'par ratio out of range'
438
+ default_block = tuple(filter(not_equals('f'), default_block))
439
+ par_attn = par_depth // par_ratio
440
+ depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
441
+ par_width = (depth_cut + depth_cut // par_attn) // par_attn
442
+ assert len(default_block) <= par_width, 'default block is too large for par_ratio'
443
+ par_block = default_block + ('f',) * (par_width - len(default_block))
444
+ par_head = par_block * par_attn
445
+ layer_types = par_head + ('f',) * (par_depth - len(par_head))
446
+ elif exists(sandwich_coef):
447
+ assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
448
+ layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
449
+ else:
450
+ layer_types = default_block * depth
451
+
452
+ self.layer_types = layer_types
453
+ self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
454
+
455
+ for layer_type in self.layer_types:
456
+ if layer_type == 'a':
457
+ layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
458
+ elif layer_type == 'c':
459
+ layer = Attention(dim, heads=heads, **attn_kwargs)
460
+ elif layer_type == 'f':
461
+ layer = FeedForward(dim, **ff_kwargs)
462
+ layer = layer if not macaron else Scale(0.5, layer)
463
+ else:
464
+ raise Exception(f'invalid layer type {layer_type}')
465
+
466
+ if isinstance(layer, Attention) and exists(branch_fn):
467
+ layer = branch_fn(layer)
468
+
469
+ if gate_residual:
470
+ residual_fn = GRUGating(dim)
471
+ else:
472
+ residual_fn = Residual()
473
+
474
+ self.layers.append(nn.ModuleList([
475
+ norm_fn(),
476
+ layer,
477
+ residual_fn
478
+ ]))
479
+
480
+ def forward(
481
+ self,
482
+ x,
483
+ context=None,
484
+ mask=None,
485
+ context_mask=None,
486
+ mems=None,
487
+ return_hiddens=False
488
+ ):
489
+ hiddens = []
490
+ intermediates = []
491
+ prev_attn = None
492
+ prev_cross_attn = None
493
+
494
+ mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
495
+
496
+ for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
497
+ is_last = ind == (len(self.layers) - 1)
498
+
499
+ if layer_type == 'a':
500
+ hiddens.append(x)
501
+ layer_mem = mems.pop(0)
502
+
503
+ residual = x
504
+
505
+ if self.pre_norm:
506
+ x = norm(x)
507
+
508
+ if layer_type == 'a':
509
+ out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
510
+ prev_attn=prev_attn, mem=layer_mem)
511
+ elif layer_type == 'c':
512
+ out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
513
+ elif layer_type == 'f':
514
+ out = block(x)
515
+
516
+ x = residual_fn(out, residual)
517
+
518
+ if layer_type in ('a', 'c'):
519
+ intermediates.append(inter)
520
+
521
+ if layer_type == 'a' and self.residual_attn:
522
+ prev_attn = inter.pre_softmax_attn
523
+ elif layer_type == 'c' and self.cross_residual_attn:
524
+ prev_cross_attn = inter.pre_softmax_attn
525
+
526
+ if not self.pre_norm and not is_last:
527
+ x = norm(x)
528
+
529
+ if return_hiddens:
530
+ intermediates = LayerIntermediates(
531
+ hiddens=hiddens,
532
+ attn_intermediates=intermediates
533
+ )
534
+
535
+ return x, intermediates
536
+
537
+ return x
538
+
539
+
540
+ class Encoder(AttentionLayers):
541
+ def __init__(self, **kwargs):
542
+ assert 'causal' not in kwargs, 'cannot set causality on encoder'
543
+ super().__init__(causal=False, **kwargs)
544
+
545
+
546
+
547
+ class TransformerWrapper(nn.Module):
548
+ def __init__(
549
+ self,
550
+ *,
551
+ num_tokens,
552
+ max_seq_len,
553
+ attn_layers,
554
+ emb_dim=None,
555
+ max_mem_len=0.,
556
+ emb_dropout=0.,
557
+ num_memory_tokens=None,
558
+ tie_embedding=False,
559
+ use_pos_emb=True
560
+ ):
561
+ super().__init__()
562
+ assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
563
+
564
+ dim = attn_layers.dim
565
+ emb_dim = default(emb_dim, dim)
566
+
567
+ self.max_seq_len = max_seq_len
568
+ self.max_mem_len = max_mem_len
569
+ self.num_tokens = num_tokens
570
+
571
+ self.token_emb = nn.Embedding(num_tokens, emb_dim)
572
+ self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
573
+ use_pos_emb and not attn_layers.has_pos_emb) else always(0)
574
+ self.emb_dropout = nn.Dropout(emb_dropout)
575
+
576
+ self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
577
+ self.attn_layers = attn_layers
578
+ self.norm = nn.LayerNorm(dim)
579
+
580
+ self.init_()
581
+
582
+ self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
583
+
584
+ # memory tokens (like [cls]) from Memory Transformers paper
585
+ num_memory_tokens = default(num_memory_tokens, 0)
586
+ self.num_memory_tokens = num_memory_tokens
587
+ if num_memory_tokens > 0:
588
+ self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
589
+
590
+ # let funnel encoder know number of memory tokens, if specified
591
+ if hasattr(attn_layers, 'num_memory_tokens'):
592
+ attn_layers.num_memory_tokens = num_memory_tokens
593
+
594
+ def init_(self):
595
+ nn.init.normal_(self.token_emb.weight, std=0.02)
596
+
597
+ def forward(
598
+ self,
599
+ x,
600
+ return_embeddings=False,
601
+ mask=None,
602
+ return_mems=False,
603
+ return_attn=False,
604
+ mems=None,
605
+ **kwargs
606
+ ):
607
+ b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
608
+ x = self.token_emb(x)
609
+ x += self.pos_emb(x)
610
+ x = self.emb_dropout(x)
611
+
612
+ x = self.project_emb(x)
613
+
614
+ if num_mem > 0:
615
+ mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
616
+ x = torch.cat((mem, x), dim=1)
617
+
618
+ # auto-handle masking after appending memory tokens
619
+ if exists(mask):
620
+ mask = F.pad(mask, (num_mem, 0), value=True)
621
+
622
+ x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
623
+ x = self.norm(x)
624
+
625
+ mem, x = x[:, :num_mem], x[:, num_mem:]
626
+
627
+ out = self.to_logits(x) if not return_embeddings else x
628
+
629
+ if return_mems:
630
+ hiddens = intermediates.hiddens
631
+ new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
632
+ new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
633
+ return out, new_mems
634
+
635
+ if return_attn:
636
+ attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
637
+ return out, attn_maps
638
+
639
+ return out
main/callbacks.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import logging
4
+ mainlogger = logging.getLogger('mainlogger')
5
+
6
+ import torch
7
+ import torchvision
8
+ import pytorch_lightning as pl
9
+ from pytorch_lightning.callbacks import Callback
10
+ from pytorch_lightning.utilities import rank_zero_only
11
+ from pytorch_lightning.utilities import rank_zero_info
12
+ from utils.save_video import log_local, prepare_to_log
13
+
14
+
15
+ class ImageLogger(Callback):
16
+ def __init__(self, batch_frequency, max_images=8, clamp=True, rescale=True, save_dir=None, \
17
+ to_local=False, log_images_kwargs=None):
18
+ super().__init__()
19
+ self.rescale = rescale
20
+ self.batch_freq = batch_frequency
21
+ self.max_images = max_images
22
+ self.to_local = to_local
23
+ self.clamp = clamp
24
+ self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
25
+ if self.to_local:
26
+ ## default save dir
27
+ self.save_dir = os.path.join(save_dir, "images")
28
+ os.makedirs(os.path.join(self.save_dir, "train"), exist_ok=True)
29
+ os.makedirs(os.path.join(self.save_dir, "val"), exist_ok=True)
30
+
31
+ def log_to_tensorboard(self, pl_module, batch_logs, filename, split, save_fps=8):
32
+ """ log images and videos to tensorboard """
33
+ global_step = pl_module.global_step
34
+ for key in batch_logs:
35
+ value = batch_logs[key]
36
+ tag = "gs%d-%s/%s-%s"%(global_step, split, filename, key)
37
+ if isinstance(value, list) and isinstance(value[0], str):
38
+ captions = ' |------| '.join(value)
39
+ pl_module.logger.experiment.add_text(tag, captions, global_step=global_step)
40
+ elif isinstance(value, torch.Tensor) and value.dim() == 5:
41
+ video = value
42
+ n = video.shape[0]
43
+ video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
44
+ frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, n*h, 1*w]
45
+ grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
46
+ grid = (grid + 1.0) / 2.0
47
+ grid = grid.unsqueeze(dim=0)
48
+ pl_module.logger.experiment.add_video(tag, grid, fps=save_fps, global_step=global_step)
49
+ elif isinstance(value, torch.Tensor) and value.dim() == 4:
50
+ img = value
51
+ grid = torchvision.utils.make_grid(img, nrow=int(n), padding=0)
52
+ grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
53
+ pl_module.logger.experiment.add_image(tag, grid, global_step=global_step)
54
+ else:
55
+ pass
56
+
57
+ @rank_zero_only
58
+ def log_batch_imgs(self, pl_module, batch, batch_idx, split="train"):
59
+ """ generate images, then save and log to tensorboard """
60
+ skip_freq = self.batch_freq if split == "train" else 5
61
+ if (batch_idx+1) % skip_freq == 0:
62
+ is_train = pl_module.training
63
+ if is_train:
64
+ pl_module.eval()
65
+ torch.cuda.empty_cache()
66
+ with torch.no_grad():
67
+ log_func = pl_module.log_images
68
+ batch_logs = log_func(batch, split=split, **self.log_images_kwargs)
69
+
70
+ ## process: move to CPU and clamp
71
+ batch_logs = prepare_to_log(batch_logs, self.max_images, self.clamp)
72
+ torch.cuda.empty_cache()
73
+
74
+ filename = "ep{}_idx{}_rank{}".format(
75
+ pl_module.current_epoch,
76
+ batch_idx,
77
+ pl_module.global_rank)
78
+ if self.to_local:
79
+ mainlogger.info("Log [%s] batch <%s> to local ..."%(split, filename))
80
+ filename = "gs{}_".format(pl_module.global_step) + filename
81
+ log_local(batch_logs, os.path.join(self.save_dir, split), filename, save_fps=10)
82
+ else:
83
+ mainlogger.info("Log [%s] batch <%s> to tensorboard ..."%(split, filename))
84
+ self.log_to_tensorboard(pl_module, batch_logs, filename, split, save_fps=10)
85
+ mainlogger.info('Finish!')
86
+
87
+ if is_train:
88
+ pl_module.train()
89
+
90
+ def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None):
91
+ if self.batch_freq != -1 and pl_module.logdir:
92
+ self.log_batch_imgs(pl_module, batch, batch_idx, split="train")
93
+
94
+ def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None):
95
+ ## different with validation_step() that saving the whole validation set and only keep the latest,
96
+ ## it records the performance of every validation (without overwritten) by only keep a subset
97
+ if self.batch_freq != -1 and pl_module.logdir:
98
+ self.log_batch_imgs(pl_module, batch, batch_idx, split="val")
99
+ if hasattr(pl_module, 'calibrate_grad_norm'):
100
+ if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
101
+ self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
102
+
103
+
104
+ class CUDACallback(Callback):
105
+ # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
106
+ def on_train_epoch_start(self, trainer, pl_module):
107
+ # Reset the memory use counter
108
+ # lightning update
109
+ if int((pl.__version__).split('.')[1])>=7:
110
+ gpu_index = trainer.strategy.root_device.index
111
+ else:
112
+ gpu_index = trainer.root_gpu
113
+ torch.cuda.reset_peak_memory_stats(gpu_index)
114
+ torch.cuda.synchronize(gpu_index)
115
+ self.start_time = time.time()
116
+
117
+ def on_train_epoch_end(self, trainer, pl_module):
118
+ if int((pl.__version__).split('.')[1])>=7:
119
+ gpu_index = trainer.strategy.root_device.index
120
+ else:
121
+ gpu_index = trainer.root_gpu
122
+ torch.cuda.synchronize(gpu_index)
123
+ max_memory = torch.cuda.max_memory_allocated(gpu_index) / 2 ** 20
124
+ epoch_time = time.time() - self.start_time
125
+
126
+ try:
127
+ max_memory = trainer.training_type_plugin.reduce(max_memory)
128
+ epoch_time = trainer.training_type_plugin.reduce(epoch_time)
129
+
130
+ rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
131
+ rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
132
+ except AttributeError:
133
+ pass
main/trainer.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse, os, sys, datetime
2
+ from omegaconf import OmegaConf
3
+ from transformers import logging as transf_logging
4
+ import pytorch_lightning as pl
5
+ from pytorch_lightning import seed_everything
6
+ from pytorch_lightning.trainer import Trainer
7
+ import torch
8
+ sys.path.insert(1, os.path.join(sys.path[0], '..'))
9
+ from utils.utils import instantiate_from_config
10
+ from utils_train import get_trainer_callbacks, get_trainer_logger, get_trainer_strategy
11
+ from utils_train import set_logger, init_workspace, load_checkpoints
12
+
13
+
14
+ def get_parser(**parser_kwargs):
15
+ parser = argparse.ArgumentParser(**parser_kwargs)
16
+ parser.add_argument("--seed", "-s", type=int, default=20230211, help="seed for seed_everything")
17
+ parser.add_argument("--name", "-n", type=str, default="", help="experiment name, as saving folder")
18
+
19
+ parser.add_argument("--base", "-b", nargs="*", metavar="base_config.yaml", help="paths to base configs. Loaded from left-to-right. "
20
+ "Parameters can be overwritten or added with command-line options of the form `--key value`.", default=list())
21
+
22
+ parser.add_argument("--train", "-t", action='store_true', default=False, help='train')
23
+ parser.add_argument("--val", "-v", action='store_true', default=False, help='val')
24
+ parser.add_argument("--test", action='store_true', default=False, help='test')
25
+
26
+ parser.add_argument("--logdir", "-l", type=str, default="logs", help="directory for logging dat shit")
27
+ parser.add_argument("--auto_resume", action='store_true', default=False, help="resume from full-info checkpoint")
28
+ parser.add_argument("--auto_resume_weight_only", action='store_true', default=False, help="resume from weight-only checkpoint")
29
+ parser.add_argument("--debug", "-d", action='store_true', default=False, help="enable post-mortem debugging")
30
+
31
+ return parser
32
+
33
+ def get_nondefault_trainer_args(args):
34
+ parser = argparse.ArgumentParser()
35
+ parser = Trainer.add_argparse_args(parser)
36
+ default_trainer_args = parser.parse_args([])
37
+ return sorted(k for k in vars(default_trainer_args) if getattr(args, k) != getattr(default_trainer_args, k))
38
+
39
+
40
+ if __name__ == "__main__":
41
+ now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
42
+ local_rank = int(os.environ.get('LOCAL_RANK'))
43
+ global_rank = int(os.environ.get('RANK'))
44
+ num_rank = int(os.environ.get('WORLD_SIZE'))
45
+
46
+ parser = get_parser()
47
+ ## Extends existing argparse by default Trainer attributes
48
+ parser = Trainer.add_argparse_args(parser)
49
+ args, unknown = parser.parse_known_args()
50
+ ## disable transformer warning
51
+ transf_logging.set_verbosity_error()
52
+ seed_everything(args.seed)
53
+
54
+ ## yaml configs: "model" | "data" | "lightning"
55
+ configs = [OmegaConf.load(cfg) for cfg in args.base]
56
+ cli = OmegaConf.from_dotlist(unknown)
57
+ config = OmegaConf.merge(*configs, cli)
58
+ lightning_config = config.pop("lightning", OmegaConf.create())
59
+ trainer_config = lightning_config.get("trainer", OmegaConf.create())
60
+
61
+ ## setup workspace directories
62
+ workdir, ckptdir, cfgdir, loginfo = init_workspace(args.name, args.logdir, config, lightning_config, global_rank)
63
+ logger = set_logger(logfile=os.path.join(loginfo, 'log_%d:%s.txt'%(global_rank, now)))
64
+ logger.info("@lightning version: %s [>=1.8 required]"%(pl.__version__))
65
+
66
+ ## MODEL CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
67
+ logger.info("***** Configing Model *****")
68
+ config.model.params.logdir = workdir
69
+ model = instantiate_from_config(config.model)
70
+
71
+ ## load checkpoints
72
+ model = load_checkpoints(model, config.model)
73
+
74
+ ## register_schedule again to make ZTSNR work
75
+ if model.rescale_betas_zero_snr:
76
+ model.register_schedule(given_betas=model.given_betas, beta_schedule=model.beta_schedule, timesteps=model.timesteps,
77
+ linear_start=model.linear_start, linear_end=model.linear_end, cosine_s=model.cosine_s)
78
+
79
+ ## update trainer config
80
+ for k in get_nondefault_trainer_args(args):
81
+ trainer_config[k] = getattr(args, k)
82
+
83
+ num_nodes = trainer_config.num_nodes
84
+ ngpu_per_node = trainer_config.devices
85
+ logger.info(f"Running on {num_rank}={num_nodes}x{ngpu_per_node} GPUs")
86
+
87
+ ## setup learning rate
88
+ base_lr = config.model.base_learning_rate
89
+ bs = config.data.params.batch_size
90
+ if getattr(config.model, 'scale_lr', True):
91
+ model.learning_rate = num_rank * bs * base_lr
92
+ else:
93
+ model.learning_rate = base_lr
94
+
95
+
96
+ ## DATA CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
97
+ logger.info("***** Configing Data *****")
98
+ data = instantiate_from_config(config.data)
99
+ data.setup()
100
+ for k in data.datasets:
101
+ logger.info(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
102
+
103
+
104
+ ## TRAINER CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
105
+ logger.info("***** Configing Trainer *****")
106
+ if "accelerator" not in trainer_config:
107
+ trainer_config["accelerator"] = "gpu"
108
+
109
+ ## setup trainer args: pl-logger and callbacks
110
+ trainer_kwargs = dict()
111
+ trainer_kwargs["num_sanity_val_steps"] = 0
112
+ logger_cfg = get_trainer_logger(lightning_config, workdir, args.debug)
113
+ trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
114
+
115
+ ## setup callbacks
116
+ callbacks_cfg = get_trainer_callbacks(lightning_config, config, workdir, ckptdir, logger)
117
+ trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
118
+ strategy_cfg = get_trainer_strategy(lightning_config)
119
+ trainer_kwargs["strategy"] = strategy_cfg if type(strategy_cfg) == str else instantiate_from_config(strategy_cfg)
120
+ trainer_kwargs['precision'] = lightning_config.get('precision', 32)
121
+ trainer_kwargs["sync_batchnorm"] = False
122
+
123
+ ## trainer config: others
124
+
125
+ trainer_args = argparse.Namespace(**trainer_config)
126
+ trainer = Trainer.from_argparse_args(trainer_args, **trainer_kwargs)
127
+
128
+ ## allow checkpointing via USR1
129
+ def melk(*args, **kwargs):
130
+ ## run all checkpoint hooks
131
+ if trainer.global_rank == 0:
132
+ print("Summoning checkpoint.")
133
+ ckpt_path = os.path.join(ckptdir, "last_summoning.ckpt")
134
+ trainer.save_checkpoint(ckpt_path)
135
+
136
+ def divein(*args, **kwargs):
137
+ if trainer.global_rank == 0:
138
+ import pudb;
139
+ pudb.set_trace()
140
+
141
+ import signal
142
+ signal.signal(signal.SIGUSR1, melk)
143
+ signal.signal(signal.SIGUSR2, divein)
144
+
145
+ ## Running LOOP >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
146
+ logger.info("***** Running the Loop *****")
147
+ if args.train:
148
+ try:
149
+ if "strategy" in lightning_config and lightning_config['strategy'].startswith('deepspeed'):
150
+ logger.info("<Training in DeepSpeed Mode>")
151
+ ## deepspeed
152
+ if trainer_kwargs['precision'] == 16:
153
+ with torch.cuda.amp.autocast():
154
+ trainer.fit(model, data)
155
+ else:
156
+ trainer.fit(model, data)
157
+ else:
158
+ logger.info("<Training in DDPSharded Mode>") ## this is default
159
+ ## ddpsharded
160
+ trainer.fit(model, data)
161
+ except Exception:
162
+ #melk()
163
+ raise
164
+
165
+ # if args.val:
166
+ # trainer.validate(model, data)
167
+ # if args.test or not trainer.interrupted:
168
+ # trainer.test(model, data)
main/utils_data.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ import numpy as np
3
+
4
+ import torch
5
+ import pytorch_lightning as pl
6
+ from torch.utils.data import DataLoader, Dataset
7
+
8
+ import os, sys
9
+ os.chdir(sys.path[0])
10
+ sys.path.append("..")
11
+ from lvdm.data.base import Txt2ImgIterableBaseDataset
12
+ from utils.utils import instantiate_from_config
13
+
14
+
15
+ def worker_init_fn(_):
16
+ worker_info = torch.utils.data.get_worker_info()
17
+
18
+ dataset = worker_info.dataset
19
+ worker_id = worker_info.id
20
+
21
+ if isinstance(dataset, Txt2ImgIterableBaseDataset):
22
+ split_size = dataset.num_records // worker_info.num_workers
23
+ # reset num_records to the true number to retain reliable length information
24
+ dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
25
+ current_id = np.random.choice(len(np.random.get_state()[1]), 1)
26
+ return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
27
+ else:
28
+ return np.random.seed(np.random.get_state()[1][0] + worker_id)
29
+
30
+
31
+ class WrappedDataset(Dataset):
32
+ """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
33
+
34
+ def __init__(self, dataset):
35
+ self.data = dataset
36
+
37
+ def __len__(self):
38
+ return len(self.data)
39
+
40
+ def __getitem__(self, idx):
41
+ return self.data[idx]
42
+
43
+
44
+ class DataModuleFromConfig(pl.LightningDataModule):
45
+ def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
46
+ wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
47
+ shuffle_val_dataloader=False, train_img=None,
48
+ test_max_n_samples=None):
49
+ super().__init__()
50
+ self.batch_size = batch_size
51
+ self.dataset_configs = dict()
52
+ self.num_workers = num_workers if num_workers is not None else batch_size * 2
53
+ self.use_worker_init_fn = use_worker_init_fn
54
+ if train is not None:
55
+ self.dataset_configs["train"] = train
56
+ self.train_dataloader = self._train_dataloader
57
+ if validation is not None:
58
+ self.dataset_configs["validation"] = validation
59
+ self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
60
+ if test is not None:
61
+ self.dataset_configs["test"] = test
62
+ self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
63
+ if predict is not None:
64
+ self.dataset_configs["predict"] = predict
65
+ self.predict_dataloader = self._predict_dataloader
66
+
67
+ self.img_loader = None
68
+ self.wrap = wrap
69
+ self.test_max_n_samples = test_max_n_samples
70
+ self.collate_fn = None
71
+
72
+ def prepare_data(self):
73
+ pass
74
+
75
+ def setup(self, stage=None):
76
+ self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
77
+ if self.wrap:
78
+ for k in self.datasets:
79
+ self.datasets[k] = WrappedDataset(self.datasets[k])
80
+
81
+ def _train_dataloader(self):
82
+ is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
83
+ if is_iterable_dataset or self.use_worker_init_fn:
84
+ init_fn = worker_init_fn
85
+ else:
86
+ init_fn = None
87
+ loader = DataLoader(self.datasets["train"], batch_size=self.batch_size,
88
+ num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True,
89
+ worker_init_fn=init_fn, collate_fn=self.collate_fn,
90
+ )
91
+ return loader
92
+
93
+ def _val_dataloader(self, shuffle=False):
94
+ if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
95
+ init_fn = worker_init_fn
96
+ else:
97
+ init_fn = None
98
+ return DataLoader(self.datasets["validation"],
99
+ batch_size=self.batch_size,
100
+ num_workers=self.num_workers,
101
+ worker_init_fn=init_fn,
102
+ shuffle=shuffle,
103
+ collate_fn=self.collate_fn,
104
+ )
105
+
106
+ def _test_dataloader(self, shuffle=False):
107
+ try:
108
+ is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
109
+ except:
110
+ is_iterable_dataset = isinstance(self.datasets['test'], Txt2ImgIterableBaseDataset)
111
+
112
+ if is_iterable_dataset or self.use_worker_init_fn:
113
+ init_fn = worker_init_fn
114
+ else:
115
+ init_fn = None
116
+
117
+ # do not shuffle dataloader for iterable dataset
118
+ shuffle = shuffle and (not is_iterable_dataset)
119
+ if self.test_max_n_samples is not None:
120
+ dataset = torch.utils.data.Subset(self.datasets["test"], list(range(self.test_max_n_samples)))
121
+ else:
122
+ dataset = self.datasets["test"]
123
+ return DataLoader(dataset, batch_size=self.batch_size,
124
+ num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle,
125
+ collate_fn=self.collate_fn,
126
+ )
127
+
128
+ def _predict_dataloader(self, shuffle=False):
129
+ if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
130
+ init_fn = worker_init_fn
131
+ else:
132
+ init_fn = None
133
+ return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
134
+ num_workers=self.num_workers, worker_init_fn=init_fn,
135
+ collate_fn=self.collate_fn,
136
+ )
main/utils_train.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, re
2
+ from omegaconf import OmegaConf
3
+ import logging
4
+ mainlogger = logging.getLogger('mainlogger')
5
+
6
+ import torch
7
+ from collections import OrderedDict
8
+
9
+ def init_workspace(name, logdir, model_config, lightning_config, rank=0):
10
+ workdir = os.path.join(logdir, name)
11
+ ckptdir = os.path.join(workdir, "checkpoints")
12
+ cfgdir = os.path.join(workdir, "configs")
13
+ loginfo = os.path.join(workdir, "loginfo")
14
+
15
+ # Create logdirs and save configs (all ranks will do to avoid missing directory error if rank:0 is slower)
16
+ os.makedirs(workdir, exist_ok=True)
17
+ os.makedirs(ckptdir, exist_ok=True)
18
+ os.makedirs(cfgdir, exist_ok=True)
19
+ os.makedirs(loginfo, exist_ok=True)
20
+
21
+ if rank == 0:
22
+ if "callbacks" in lightning_config and 'metrics_over_trainsteps_checkpoint' in lightning_config.callbacks:
23
+ os.makedirs(os.path.join(ckptdir, 'trainstep_checkpoints'), exist_ok=True)
24
+ OmegaConf.save(model_config, os.path.join(cfgdir, "model.yaml"))
25
+ OmegaConf.save(OmegaConf.create({"lightning": lightning_config}), os.path.join(cfgdir, "lightning.yaml"))
26
+ return workdir, ckptdir, cfgdir, loginfo
27
+
28
+ def check_config_attribute(config, name):
29
+ if name in config:
30
+ value = getattr(config, name)
31
+ return value
32
+ else:
33
+ return None
34
+
35
+ def get_trainer_callbacks(lightning_config, config, logdir, ckptdir, logger):
36
+ default_callbacks_cfg = {
37
+ "model_checkpoint": {
38
+ "target": "pytorch_lightning.callbacks.ModelCheckpoint",
39
+ "params": {
40
+ "dirpath": ckptdir,
41
+ "filename": "{epoch}",
42
+ "verbose": True,
43
+ "save_last": False,
44
+ }
45
+ },
46
+ "batch_logger": {
47
+ "target": "callbacks.ImageLogger",
48
+ "params": {
49
+ "save_dir": logdir,
50
+ "batch_frequency": 1000,
51
+ "max_images": 4,
52
+ "clamp": True,
53
+ }
54
+ },
55
+ "learning_rate_logger": {
56
+ "target": "pytorch_lightning.callbacks.LearningRateMonitor",
57
+ "params": {
58
+ "logging_interval": "step",
59
+ "log_momentum": False
60
+ }
61
+ },
62
+ "cuda_callback": {
63
+ "target": "callbacks.CUDACallback"
64
+ },
65
+ }
66
+
67
+ ## optional setting for saving checkpoints
68
+ monitor_metric = check_config_attribute(config.model.params, "monitor")
69
+ if monitor_metric is not None:
70
+ mainlogger.info(f"Monitoring {monitor_metric} as checkpoint metric.")
71
+ default_callbacks_cfg["model_checkpoint"]["params"]["monitor"] = monitor_metric
72
+ default_callbacks_cfg["model_checkpoint"]["params"]["save_top_k"] = 3
73
+ default_callbacks_cfg["model_checkpoint"]["params"]["mode"] = "min"
74
+
75
+ if 'metrics_over_trainsteps_checkpoint' in lightning_config.callbacks:
76
+ mainlogger.info('Caution: Saving checkpoints every n train steps without deleting. This might require some free space.')
77
+ default_metrics_over_trainsteps_ckpt_dict = {
78
+ 'metrics_over_trainsteps_checkpoint': {"target": 'pytorch_lightning.callbacks.ModelCheckpoint',
79
+ 'params': {
80
+ "dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'),
81
+ "filename": "{epoch}-{step}",
82
+ "verbose": True,
83
+ 'save_top_k': -1,
84
+ 'every_n_train_steps': 10000,
85
+ 'save_weights_only': True
86
+ }
87
+ }
88
+ }
89
+ default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
90
+
91
+ if "callbacks" in lightning_config:
92
+ callbacks_cfg = lightning_config.callbacks
93
+ else:
94
+ callbacks_cfg = OmegaConf.create()
95
+ callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
96
+
97
+ return callbacks_cfg
98
+
99
+ def get_trainer_logger(lightning_config, logdir, on_debug):
100
+ default_logger_cfgs = {
101
+ "tensorboard": {
102
+ "target": "pytorch_lightning.loggers.TensorBoardLogger",
103
+ "params": {
104
+ "save_dir": logdir,
105
+ "name": "tensorboard",
106
+ }
107
+ },
108
+ "testtube": {
109
+ "target": "pytorch_lightning.loggers.CSVLogger",
110
+ "params": {
111
+ "name": "testtube",
112
+ "save_dir": logdir,
113
+ }
114
+ },
115
+ }
116
+ os.makedirs(os.path.join(logdir, "tensorboard"), exist_ok=True)
117
+ default_logger_cfg = default_logger_cfgs["tensorboard"]
118
+ if "logger" in lightning_config:
119
+ logger_cfg = lightning_config.logger
120
+ else:
121
+ logger_cfg = OmegaConf.create()
122
+ logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
123
+ return logger_cfg
124
+
125
+ def get_trainer_strategy(lightning_config):
126
+ default_strategy_dict = {
127
+ "target": "pytorch_lightning.strategies.DDPShardedStrategy"
128
+ }
129
+ if "strategy" in lightning_config:
130
+ strategy_cfg = lightning_config.strategy
131
+ return strategy_cfg
132
+ else:
133
+ strategy_cfg = OmegaConf.create()
134
+
135
+ strategy_cfg = OmegaConf.merge(default_strategy_dict, strategy_cfg)
136
+ return strategy_cfg
137
+
138
+ def load_checkpoints(model, model_cfg):
139
+ if check_config_attribute(model_cfg, "pretrained_checkpoint"):
140
+ pretrained_ckpt = model_cfg.pretrained_checkpoint
141
+ assert os.path.exists(pretrained_ckpt), "Error: Pre-trained checkpoint NOT found at:%s"%pretrained_ckpt
142
+ mainlogger.info(">>> Load weights from pretrained checkpoint")
143
+
144
+ pl_sd = torch.load(pretrained_ckpt, map_location="cpu")
145
+ try:
146
+ if 'state_dict' in pl_sd.keys():
147
+ model.load_state_dict(pl_sd["state_dict"], strict=True)
148
+ mainlogger.info(">>> Loaded weights from pretrained checkpoint: %s"%pretrained_ckpt)
149
+ else:
150
+ # deepspeed
151
+ new_pl_sd = OrderedDict()
152
+ for key in pl_sd['module'].keys():
153
+ new_pl_sd[key[16:]]=pl_sd['module'][key]
154
+ model.load_state_dict(new_pl_sd, strict=True)
155
+ except:
156
+ model.load_state_dict(pl_sd)
157
+ else:
158
+ mainlogger.info(">>> Start training from scratch")
159
+
160
+ return model
161
+
162
+ def set_logger(logfile, name='mainlogger'):
163
+ logger = logging.getLogger(name)
164
+ logger.setLevel(logging.INFO)
165
+ fh = logging.FileHandler(logfile, mode='w')
166
+ fh.setLevel(logging.INFO)
167
+ ch = logging.StreamHandler()
168
+ ch.setLevel(logging.DEBUG)
169
+ fh.setFormatter(logging.Formatter("%(asctime)s-%(levelname)s: %(message)s"))
170
+ ch.setFormatter(logging.Formatter("%(message)s"))
171
+ logger.addHandler(fh)
172
+ logger.addHandler(ch)
173
+ return logger
prompts/.DS_Store ADDED
Binary file (6.15 kB). View file
 
prompts/1024_interp/74906_1462_frame1.png ADDED
prompts/1024_interp/74906_1462_frame3.png ADDED
prompts/1024_interp/Japan_v2_2_062266_s2_frame1.png ADDED
prompts/1024_interp/Japan_v2_2_062266_s2_frame3.png ADDED
prompts/1024_interp/Japan_v2_3_119235_s2_frame1.png ADDED
prompts/1024_interp/Japan_v2_3_119235_s2_frame3.png ADDED
prompts/1024_interp/interp_1_1.png ADDED
prompts/1024_interp/interp_1_2.png ADDED
prompts/1024_interp/interp_2_1.png ADDED
prompts/1024_interp/interp_2_2.png ADDED
prompts/512_interp/74906_1462_frame1.png ADDED
prompts/512_interp/74906_1462_frame3.png ADDED
prompts/512_interp/Japan_v2_2_062266_s2_frame1.png ADDED
prompts/512_interp/Japan_v2_2_062266_s2_frame3.png ADDED
prompts/512_interp/Japan_v2_3_119235_s2_frame1.png ADDED
prompts/512_interp/Japan_v2_3_119235_s2_frame3.png ADDED
prompts/512_interp/prompts.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ walking man
2
+ an anime scene
3
+ an anime scene