Spaces:
Runtime error
Runtime error
File size: 11,731 Bytes
75e181a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import tensorflow as tf
import os
import json
import pandas as pd
import re
import numpy as np
import time
import matplotlib.pyplot as plt
import collections
import random
import requests
import json
import pickle
from math import sqrt
from PIL import Image
from tqdm.auto import tqdm
DATASET_PATH = './coco2017/'
MAX_LENGTH = 40
MAX_VOCABULARY = 12000
BATCH_SIZE = 64
BUFFER_SIZE = 1000
EMBEDDING_DIM = 512
UNITS = 512
EPOCHS = 5
with open(f'{DATASET_PATH}/annotations/captions_train2017.json', 'r') as f:
data = json.load(f)
data = data['annotations']
img_cap_pairs = []
for sample in data:
img_name = '%012d.jpg' % sample['image_id']
img_cap_pairs.append([img_name, sample['caption']])
captions = pd.DataFrame(img_cap_pairs, columns=['image', 'caption'])
captions['image'] = captions['image'].apply(
lambda x: f'{DATASET_PATH}/train2017/{x}'
)
captions = captions.sample(70000)
captions = captions.reset_index(drop=True)
captions.head()
def preprocessing(text):
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub('\s+', ' ', text)
text = text.strip()
text = '[start] ' + text + ' [end]'
return text
captions['caption'] = captions['caption'].apply(preprocessing)
captions.head()
tokenizer = tf.keras.layers.TextVectorization(
max_tokens=MAX_VOCABULARY,
standardize=None,
output_sequence_length=MAX_LENGTH)
tokenizer.adapt(captions['caption'])
pickle.dump(tokenizer.get_vocabulary(), open('./image-caption-generator/vocabulary/vocab_coco.file', 'wb'))
word2idx = tf.keras.layers.StringLookup(
mask_token = "",
vocabulary = tokenizer.get_vocabulary()
)
idx2word = tf.keras.layers.StringLookup(
mask_token = "",
vocabulary = tokenizer.get_vocabulary(),
invert = True
)
img_to_cap_vector = collections.defaultdict(list)
for img, cap in zip(captions['image'], captions['caption']):
img_to_cap_vector[img].append(cap)
img_keys = list(img_to_cap_vector.keys())
random.shuffle(img_keys)
slice_index = int(len(img_keys)*0.8)
img_name_train_keys, img_name_test_keys = (img_keys[:slice_index], img_keys[slice_index:])
train_img = []
train_caption = []
for imgt in img_name_train_keys:
capt_len = len(img_to_cap_vector[imgt])
train_img.extend([imgt]*capt_len)
train_caption.extend(img_to_cap_vector[imgt])
test_img = []
test_caption = []
for imgtest in img_name_test_keys:
capv_len = len(img_to_cap_vector[imgtest])
test_img.extend([imgtest]*capv_len)
test_caption.extend(img_to_cap_vector[imgtest])
len(train_img), len(train_caption), len(test_img), len(test_caption)
def load_data(img_path, caption):
img = tf.io.read_file(img_path)
img = tf.io.decode_jpeg(img, channels=3)
img = tf.keras.layers.Resizing(299, 299)(img)
img = tf.keras.applications.inception_v3.preprocess_input(img)
caption = tokenizer(caption)
return img, caption
train_dataset = tf.data.Dataset.from_tensor_slices((train_img,train_caption))
train_dataset = train_dataset.map(load_data, num_parallel_calls = tf.data.AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = tf.data.Dataset.from_tensor_slices((test_img,test_caption))
test_dataset = test_dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
image_augmentation = tf.keras.Sequential(
[
tf.keras.layers.RandomFlip("horizontal"),
tf.keras.layers.RandomRotation(0.2),
tf.keras.layers.RandomContrast(0.3),
]
)
def CNN_Encoder():
inception_v3 = tf.keras.applications.InceptionV3(
include_top=False,
weights='imagenet'
)
output = inception_v3.output
output = tf.keras.layers.Reshape(
(-1, output.shape[-1]))(output)
cnn_model = tf.keras.models.Model(inception_v3.input, output)
return cnn_model
class TransformerEncoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads):
super().__init__()
self.layer_norm_1 = tf.keras.layers.LayerNormalization()
self.layer_norm_2 = tf.keras.layers.LayerNormalization()
self.attention = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
def call(self, x, training):
x = self.layer_norm_1(x)
x = self.dense(x)
attn_output = self.attention(
query=x,
value=x,
key=x,
attention_mask=None,
training=training
)
x = self.layer_norm_2(x + attn_output)
return x
class Embeddings(tf.keras.layers.Layer):
def __init__(self, vocab_size, embed_dim, max_len):
super().__init__()
self.token_embeddings = tf.keras.layers.Embedding(
vocab_size, embed_dim)
self.position_embeddings = tf.keras.layers.Embedding(
max_len, embed_dim, input_shape=(None, max_len))
def call(self, input_ids):
length = tf.shape(input_ids)[-1]
position_ids = tf.range(start=0, limit=length, delta=1)
position_ids = tf.expand_dims(position_ids, axis=0)
token_embeddings = self.token_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
return token_embeddings + position_embeddings
class TransformerDecoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, units, num_heads):
super().__init__()
self.embedding = Embeddings(
tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)
self.attention_1 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.attention_2 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.layernorm_1 = tf.keras.layers.LayerNormalization()
self.layernorm_2 = tf.keras.layers.LayerNormalization()
self.layernorm_3 = tf.keras.layers.LayerNormalization()
self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)
self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")
self.dropout_1 = tf.keras.layers.Dropout(0.3)
self.dropout_2 = tf.keras.layers.Dropout(0.5)
def call(self, input_ids, encoder_output, training, mask=None):
embeddings = self.embedding(input_ids)
combined_mask = None
padding_mask = None
if mask is not None:
causal_mask = self.get_causal_attention_mask(embeddings)
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
combined_mask = tf.minimum(combined_mask, causal_mask)
attn_output_1 = self.attention_1(
query=embeddings,
value=embeddings,
key=embeddings,
attention_mask=combined_mask,
training=training
)
out_1 = self.layernorm_1(embeddings + attn_output_1)
attn_output_2 = self.attention_2(
query=out_1,
value=encoder_output,
key=encoder_output,
attention_mask=padding_mask,
training=training
)
out_2 = self.layernorm_2(out_1 + attn_output_2)
ffn_out = self.ffn_layer_1(out_2)
ffn_out = self.dropout_1(ffn_out, training=training)
ffn_out = self.ffn_layer_2(ffn_out)
ffn_out = self.layernorm_3(ffn_out + out_2)
ffn_out = self.dropout_2(ffn_out, training=training)
preds = self.out(ffn_out)
return preds
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0
)
return tf.tile(mask, mult)
class ImageCaptioningModel(tf.keras.Model):
def __init__(self, cnn_model, encoder, decoder, image_aug=None):
super().__init__()
self.cnn_model = cnn_model
self.encoder = encoder
self.decoder = decoder
self.image_aug = image_aug
self.loss_tracker = tf.keras.metrics.Mean(name="loss")
self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")
def calculate_loss(self, y_true, y_pred, mask):
loss = self.loss(y_true, y_pred)
mask = tf.cast(mask, dtype=loss.dtype)
loss *= mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
def calculate_accuracy(self, y_true, y_pred, mask):
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
accuracy = tf.math.logical_and(mask, accuracy)
accuracy = tf.cast(accuracy, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
def compute_loss_and_acc(self, img_embed, captions, training=True):
encoder_output = self.encoder(img_embed, training=True)
y_input = captions[:, :-1]
y_true = captions[:, 1:]
mask = (y_true != 0)
y_pred = self.decoder(
y_input, encoder_output, training=True, mask=mask
)
loss = self.calculate_loss(y_true, y_pred, mask)
acc = self.calculate_accuracy(y_true, y_pred, mask)
return loss, acc
def train_step(self, batch):
imgs, captions = batch
if self.image_aug:
imgs = self.image_aug(imgs)
img_embed = self.cnn_model(imgs)
with tf.GradientTape() as tape:
loss, acc = self.compute_loss_and_acc(
img_embed, captions
)
train_vars = (
self.encoder.trainable_variables + self.decoder.trainable_variables
)
grads = tape.gradient(loss, train_vars)
self.optimizer.apply_gradients(zip(grads, train_vars))
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
def test_step(self, batch):
imgs, captions = batch
img_embed = self.cnn_model(imgs)
loss, acc = self.compute_loss_and_acc(
img_embed, captions, training=False
)
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
@property
def metrics(self):
return [self.loss_tracker, self.acc_tracker]
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
cnn_model = CNN_Encoder()
caption_model = ImageCaptioningModel(
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=image_augmentation,
)
cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False, reduction="none"
)
early_stopping = tf.keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)
caption_model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=cross_entropy
)
history = caption_model.fit(
train_dataset,
epochs=EPOCHS,
validation_data=val_dataset,
callbacks=[early_stopping]
)
caption_model.save_weights('./image-caption-generator/models/trained_coco_weights.h5')
|