Spaces:
Running
Running
File size: 5,642 Bytes
c30a8ce 7d22bdf 4452beb c30a8ce 7d22bdf 4452beb 7d22bdf 4452beb 7d22bdf 4452beb 486e870 c30a8ce 4452beb c30a8ce 4452beb c30a8ce 4d223e5 c30a8ce 4452beb 7d22bdf c30a8ce 4d223e5 c30a8ce 7d22bdf c30a8ce 7d22bdf c30a8ce 7d22bdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import streamlit.components.v1 as components
import numpy
import sahi.predict
import sahi.utils
from PIL import Image
import base64
import io
import os
import uuid
TEMP_DIR = "temp"
def sahi_mmdet_inference(
image,
detection_model,
slice_height=512,
slice_width=512,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2,
image_size=640,
postprocess_type="UNIONMERGE",
postprocess_match_metric="IOS",
postprocess_match_threshold=0.5,
postprocess_class_agnostic=False,
):
# standard inference
prediction_result_1 = sahi.predict.get_prediction(
image=image, detection_model=detection_model, image_size=image_size
)
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_1.object_prediction_list,
)
output_1 = Image.fromarray(visual_result_1["image"])
# sliced inference
prediction_result_2 = sahi.predict.get_sliced_prediction(
image=image,
detection_model=detection_model,
image_size=image_size,
slice_height=slice_height,
slice_width=slice_width,
overlap_height_ratio=overlap_height_ratio,
overlap_width_ratio=overlap_width_ratio,
postprocess_type=postprocess_type,
postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
postprocess_class_agnostic=postprocess_class_agnostic,
)
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_2.object_prediction_list,
)
output_2 = Image.fromarray(visual_result_2["image"])
return output_1, output_2
def pillow_to_base64(image: Image.Image):
in_mem_file = io.BytesIO()
image.save(in_mem_file, format="JPEG", subsampling=0, quality=100)
img_bytes = in_mem_file.getvalue() # bytes
image_str = base64.b64encode(img_bytes).decode("utf-8")
base64_src = f"data:image/jpg;base64,{image_str}"
return base64_src
def local_file_to_base64(image_path: str):
file_ = open(image_path, "rb")
img_bytes = file_.read()
image_str = base64.b64encode(img_bytes).decode("utf-8")
file_.close()
base64_src = f"data:image/jpg;base64,{image_str}"
return base64_src
def pillow_local_file_to_base64(image: Image.Image):
# pillow to local file
img_path = TEMP_DIR + "/" + str(uuid.uuid4()) + ".jpg"
image.save(img_path, subsampling=0, quality=100)
# local file base64 str
base64_src = local_file_to_base64(img_path)
return base64_src
def image_comparison(
img1: str,
img2: str,
label1: str = "1",
label2: str = "2",
width: int = 700,
show_labels: bool = True,
starting_position: int = 50,
make_responsive: bool = True,
in_memory=False,
):
"""Create a new juxtapose component.
Parameters
----------
img1: str, PosixPath, PIL.Image or URL
Input image to compare
img2: str, PosixPath, PIL.Image or URL
Input image to compare
label1: str or None
Label for image 1
label2: str or None
Label for image 2
width: int or None
Width of the component in px
show_labels: bool or None
Show given labels on images
starting_position: int or None
Starting position of the slider as percent (0-100)
make_responsive: bool or None
Enable responsive mode
in_memory: bool or None
Handle pillow to base64 conversion in memory without saving to local
Returns
-------
static_component: Boolean
Returns a static component with a timeline
"""
# prepare images
img_width, img_height = img1.size
h_to_w = img_height / img_width
height = (width * h_to_w) * 0.95
img1_pillow = sahi.utils.cv.read_image_as_pil(img1)
img2_pillow = sahi.utils.cv.read_image_as_pil(img2)
if in_memory:
# create base64 str from pillow images
img1 = pillow_to_base64(img1_pillow)
img2 = pillow_to_base64(img2_pillow)
else:
# clean temp dir
os.makedirs(TEMP_DIR, exist_ok=True)
for file_ in os.listdir(TEMP_DIR):
if file_.endswith(".jpg"):
os.remove(TEMP_DIR + "/" + file_)
# create base64 str from pillow images
img1 = pillow_local_file_to_base64(img1_pillow)
img2 = pillow_local_file_to_base64(img2_pillow)
# load css + js
cdn_path = "https://cdn.knightlab.com/libs/juxtapose/latest"
css_block = f'<link rel="stylesheet" href="{cdn_path}/css/juxtapose.css">'
js_block = f'<script src="{cdn_path}/js/juxtapose.min.js"></script>'
# write html block
htmlcode = f"""
{css_block}
{js_block}
<div id="foo"style="height: {height}; width: {width or '%100'};"></div>
<script>
slider = new juxtapose.JXSlider('#foo',
[
{{
src: '{img1}',
label: '{label1}',
}},
{{
src: '{img2}',
label: '{label2}',
}}
],
{{
animate: true,
showLabels: {'true' if show_labels else 'false'},
showCredits: true,
startingPosition: "{starting_position}%",
makeResponsive: {'true' if make_responsive else 'false'},
}});
</script>
"""
static_component = components.html(htmlcode, height=height, width=width)
return static_component
|