Spaces:
Sleeping
Sleeping
File size: 2,154 Bytes
14741b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
import pandas as pd
import torch
from PIL import Image
from ultralytics import YOLO
import gradio as gr
class YOLODetect():
def __init__(self, modelo):
self.modelo = modelo
def predecir(self, source, imgsz=1280, conf=0.7, iou=0.50):
self.results = self.modelo.predict(source=source, save=True, imgsz=imgsz, conf=conf, iou=iou)
return self.results
def render(self):
result = self.results[0]
file_name = os.path.join(result.save_dir, result.path)
render = Image.open(file_name)
return render
# Inicializa el modelo YOLOv8
path_best_model = 'yolov8n.pt'
modelo_yolo = YOLO(path_best_model)
def detect_objects(im, size, iou, conf):
'''Wrapper para Gradio'''
g = (int(size) / max(im.size)) # gain
im = im.resize(tuple([int(x * g) for x in im.size]), Image.LANCZOS) # resize with antialiasing
model = YOLODetect(modelo_yolo)
results = model.predecir(source=im, imgsz=int(size), conf=conf, iou=iou)
objects_detected = results[0].boxes.cls.tolist() # Clases detectadas.
objects_conf = results[0].boxes.conf.tolist() # Probabilidad de detecci贸n por clase detectada.
objects_nested_list = pd.DataFrame({'Clase': objects_detected, 'Probabilidad': objects_conf})
result_img = model.render()
return result_img, objects_nested_list
def save_feedback(size, iou, conf,
object_count_detected,
objects_list,
user_text, feedback_text, check_status):
try:
# Aqu铆 puede ir el c贸digo para almacenar los datos en una base de datos.
return "Se guard贸 el feedback exitosamente."
except Exception as err:
print(err)
return "Error al guardar el feedback."
# Configura la interfaz de Gradio
with gr.Blocks() as demo:
gr.Markdown("# YOLOv8 Detecci贸n de objetos")
with gr.Row():
iou_threshold = gr.Slider(label="NMS IoU Threshold (0.0 - 1.0)", minimum=0.0, maximum=1.0, value=0.8)
conf_threshold = gr.Slider(label="Umbral o threshold (0.0 - 1.0)", minimum=0.0, maximum=1.0, value=0.9)
size = gr.Dropdown(label="Tama帽o de la
|