File size: 2,154 Bytes
14741b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import pandas as pd
import torch
from PIL import Image
from ultralytics import YOLO
import gradio as gr

class YOLODetect():
    def __init__(self, modelo):
        self.modelo = modelo

    def predecir(self, source, imgsz=1280, conf=0.7, iou=0.50):
        self.results = self.modelo.predict(source=source, save=True, imgsz=imgsz, conf=conf, iou=iou)
        return self.results

    def render(self):
        result = self.results[0]
        file_name = os.path.join(result.save_dir, result.path)
        render = Image.open(file_name)
        return render

# Inicializa el modelo YOLOv8
path_best_model = 'yolov8n.pt'
modelo_yolo = YOLO(path_best_model)

def detect_objects(im, size, iou, conf):
    '''Wrapper para Gradio'''
    g = (int(size) / max(im.size))  # gain
    im = im.resize(tuple([int(x * g) for x in im.size]), Image.LANCZOS) # resize with antialiasing

    model = YOLODetect(modelo_yolo)
    results = model.predecir(source=im, imgsz=int(size), conf=conf, iou=iou)

    objects_detected = results[0].boxes.cls.tolist()  # Clases detectadas.
    objects_conf = results[0].boxes.conf.tolist()  # Probabilidad de detecci贸n por clase detectada.

    objects_nested_list = pd.DataFrame({'Clase': objects_detected, 'Probabilidad': objects_conf})

    result_img = model.render()
    return result_img, objects_nested_list

def save_feedback(size, iou, conf, 
                object_count_detected,
                objects_list,
                user_text, feedback_text, check_status):
    try:
        # Aqu铆 puede ir el c贸digo para almacenar los datos en una base de datos.
        return "Se guard贸 el feedback exitosamente."
    except Exception as err:
        print(err)
        return "Error al guardar el feedback."

# Configura la interfaz de Gradio
with gr.Blocks() as demo:
    gr.Markdown("# YOLOv8 Detecci贸n de objetos")

    with gr.Row():
        iou_threshold = gr.Slider(label="NMS IoU Threshold (0.0 - 1.0)", minimum=0.0, maximum=1.0, value=0.8)
        conf_threshold = gr.Slider(label="Umbral o threshold (0.0 - 1.0)", minimum=0.0, maximum=1.0, value=0.9)
        size = gr.Dropdown(label="Tama帽o de la