Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -87,28 +87,65 @@ def scrape_articles(articles: List[Dict]) -> List[Dict]:
|
|
87 |
|
88 |
return articles
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
@tool
|
91 |
def summarize_news(articles: List[Dict]) -> str:
|
92 |
-
"""Creates a summary of the news articles followed by a list of sources.
|
93 |
-
|
94 |
-
Args:
|
95 |
-
articles: List of article dictionaries containing title, source, date, link, snippet, and full_content
|
96 |
-
|
97 |
-
Returns:
|
98 |
-
A string containing a summary followed by article references
|
99 |
-
"""
|
100 |
if not articles or not isinstance(articles, list):
|
101 |
return "No articles to summarize"
|
102 |
|
103 |
-
#
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
summary = "📰 Summary:\n"
|
108 |
summary += "Latest news covers " + ", ".join(set(article['source'] for article in articles)) + ". "
|
109 |
-
|
|
|
110 |
|
111 |
-
# List individual articles
|
112 |
summary += "🔍 Articles:\n"
|
113 |
for idx, article in enumerate(articles, 1):
|
114 |
title = article['title']
|
@@ -123,24 +160,12 @@ def summarize_news(articles: List[Dict]) -> str:
|
|
123 |
|
124 |
return summary
|
125 |
|
126 |
-
# Load prompt templates
|
127 |
-
with open("prompts.yaml", 'r') as stream:
|
128 |
-
prompt_templates = yaml.safe_load(stream)
|
129 |
-
|
130 |
-
# Initialize the model
|
131 |
-
model = HfApiModel(
|
132 |
-
max_tokens=2096,
|
133 |
-
temperature=0.5,
|
134 |
-
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
135 |
-
custom_role_conversions=None,
|
136 |
-
)
|
137 |
-
|
138 |
final_answer = FinalAnswerTool()
|
139 |
|
140 |
# Create the agent with all tools
|
141 |
agent = CodeAgent(
|
142 |
-
model=model
|
143 |
-
tools=[fetch_news, scrape_articles, summarize_news, final_answer],
|
144 |
max_steps=6,
|
145 |
verbosity_level=1,
|
146 |
grammar=None,
|
|
|
87 |
|
88 |
return articles
|
89 |
|
90 |
+
# Load prompt templates
|
91 |
+
with open("prompts.yaml", 'r') as stream:
|
92 |
+
prompt_templates = yaml.safe_load(stream)
|
93 |
+
|
94 |
+
# Initialize the models
|
95 |
+
qwen_model = HfApiModel(
|
96 |
+
max_tokens=2096,
|
97 |
+
temperature=0.5,
|
98 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
99 |
+
custom_role_conversions=None,
|
100 |
+
)
|
101 |
+
|
102 |
+
deepseek_model = HfApiModel(
|
103 |
+
max_tokens=2096,
|
104 |
+
temperature=0.3, # Lower temperature for more focused summaries
|
105 |
+
model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',
|
106 |
+
custom_role_conversions=None,
|
107 |
+
)
|
108 |
+
|
109 |
@tool
|
110 |
def summarize_news(articles: List[Dict]) -> str:
|
111 |
+
"""Creates a summary of the news articles followed by a list of sources."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
if not articles or not isinstance(articles, list):
|
113 |
return "No articles to summarize"
|
114 |
|
115 |
+
# Prepare content for summarization
|
116 |
+
content_to_summarize = ""
|
117 |
+
for article in articles:
|
118 |
+
content = article.get('full_content', article['snippet'])
|
119 |
+
content_to_summarize += f"Title: {article['title']}\nSource: {article['source']}\nContent: {content}\n\n"
|
120 |
+
|
121 |
+
# Use DeepSeek model to generate a concise summary
|
122 |
+
summary_prompt = f"""Please provide a concise summary of these news articles, focusing on the key points and main developments. Then list the individual articles with brief descriptions.
|
123 |
+
|
124 |
+
Articles to summarize:
|
125 |
+
{content_to_summarize}
|
126 |
+
|
127 |
+
Format the output as:
|
128 |
+
📰 Summary: [overall summary]
|
129 |
+
|
130 |
+
🔍 Key Articles:
|
131 |
+
1. [Title] - [brief description]
|
132 |
+
[Read more link + date]
|
133 |
+
"""
|
134 |
|
135 |
+
try:
|
136 |
+
summary = deepseek_model.complete(summary_prompt).strip()
|
137 |
+
return summary
|
138 |
+
except Exception as e:
|
139 |
+
# Fallback to original summary format if DeepSeek fails
|
140 |
+
return original_summary_format(articles)
|
141 |
+
|
142 |
+
def original_summary_format(articles: List[Dict]) -> str:
|
143 |
+
# Original summary format as fallback
|
144 |
summary = "📰 Summary:\n"
|
145 |
summary += "Latest news covers " + ", ".join(set(article['source'] for article in articles)) + ". "
|
146 |
+
all_snippets = [article.get('full_content', article['snippet']) for article in articles]
|
147 |
+
summary += "Key points: " + ". ".join(all_snippets[:2]) + "\n\n"
|
148 |
|
|
|
149 |
summary += "🔍 Articles:\n"
|
150 |
for idx, article in enumerate(articles, 1):
|
151 |
title = article['title']
|
|
|
160 |
|
161 |
return summary
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
final_answer = FinalAnswerTool()
|
164 |
|
165 |
# Create the agent with all tools
|
166 |
agent = CodeAgent(
|
167 |
+
model=qwen_model, # Use Qwen model for main agent
|
168 |
+
tools=[fetch_news, scrape_articles, summarize_news, final_answer],
|
169 |
max_steps=6,
|
170 |
verbosity_level=1,
|
171 |
grammar=None,
|