File size: 997 Bytes
5aff646
f8732ac
 
 
2ddf4d0
 
 
5aff646
9f2a34c
 
 
 
 
 
 
 
 
 
 
 
7356f5c
f8732ac
9f2a34c
f8732ac
7356f5c
3145d7c
 
f8732ac
3145d7c
8664f8a
9f2a34c
 
 
5aff646
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import os
import openai

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings

import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,  # Set the logging level
    format='%(asctime)s - %(levelname)s - %(message)s',  # Define the log format
    handlers=[
        logging.StreamHandler()  # Output logs to the console
    ]
)


openai.api_key = os.environ['OpenAI_ApiKey']
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
logging.info("Start load document.")

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

def greet(question):
    logging.info("execute greet")
    return question
    # return query_engine.query(question)


demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()