Spaces:
Sleeping
Sleeping
File size: 997 Bytes
5aff646 f8732ac 2ddf4d0 5aff646 9f2a34c 7356f5c f8732ac 9f2a34c f8732ac 7356f5c 3145d7c f8732ac 3145d7c 8664f8a 9f2a34c 5aff646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import os
import openai
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO, # Set the logging level
format='%(asctime)s - %(levelname)s - %(message)s', # Define the log format
handlers=[
logging.StreamHandler() # Output logs to the console
]
)
openai.api_key = os.environ['OpenAI_ApiKey']
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
logging.info("Start load document.")
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
def greet(question):
logging.info("execute greet")
return question
# return query_engine.query(question)
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch() |