Spaces:
Runtime error
Runtime error
File size: 1,206 Bytes
1880d16 bfb9266 1880d16 e14fab5 f9cf908 1880d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
def classify(input_img):
from transformers import (
AutoModelForSequenceClassification,
LayoutLMv2FeatureExtractor,
LayoutLMv2Tokenizer,
LayoutLMv2Processor,
)
model = AutoModelForSequenceClassification.from_pretrained(
"fedihch/InvoiceReceiptClassifier"
)
feature_extractor = LayoutLMv2FeatureExtractor()
tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased")
processor = LayoutLMv2Processor(feature_extractor, tokenizer)
encoded_inputs = processor(input_img, return_tensors="pt")
for k, v in encoded_inputs.items():
encoded_inputs[k] = v.to(model.device)
outputs = model(**encoded_inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
id2label = {0: "invoice", 1: "receipt"}
return id2label[predicted_class_idx]
examples =[['Receipt.jpg'],['invoice.webp'],]
demo = gr.Interface(
fn=classify,
inputs=gr.Image(shape=(200, 200)),
outputs="text",
allow_flagging="manual",
description="Upload an invoice or receipt image and the model will classify it!",
examples=examples,
)
demo.launch(share=True)
|