File size: 14,446 Bytes
8f3dcc9
 
 
 
bf48682
a5d2e48
8f3dcc9
9b178fc
8f3dcc9
 
9b178fc
8f3dcc9
 
ed63b7d
8f3dcc9
 
 
 
 
9b178fc
8f3dcc9
 
9b178fc
3a0bd05
8f3dcc9
9b178fc
 
6eabeb2
bf48682
ba81a8e
ec4d8ae
 
 
 
 
 
 
ba81a8e
 
 
8f3dcc9
 
 
 
 
ba81a8e
 
 
8f3dcc9
 
 
 
 
 
 
bf48682
 
7785332
8f3dcc9
 
9b178fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba81a8e
9b178fc
 
 
 
 
 
 
 
 
8f3dcc9
ec4d8ae
8f3dcc9
 
 
 
42343e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3dcc9
 
 
 
 
 
 
ec4d8ae
8f3dcc9
 
 
 
 
 
 
 
ec4d8ae
8f3dcc9
ec4d8ae
 
 
8f3dcc9
 
 
 
 
 
 
 
 
 
 
 
 
 
bf48682
8f3dcc9
 
 
 
 
 
6eabeb2
 
 
 
 
 
 
 
 
 
 
8f3dcc9
 
 
 
ec4d8ae
8f3dcc9
 
bf48682
 
9b178fc
bf48682
8f3dcc9
bf48682
8f3dcc9
 
1de8d65
8f3dcc9
bf48682
 
 
 
35eafc3
3a0bd05
 
9b178fc
35eafc3
 
 
 
 
 
 
 
 
 
 
8f3dcc9
 
ed63b7d
 
 
 
 
 
 
 
 
 
 
 
8f3dcc9
 
 
 
ec4d8ae
8f3dcc9
 
bf48682
 
ed63b7d
9b178fc
bf48682
 
8f3dcc9
bf48682
8f3dcc9
 
a5d2e48
ed63b7d
8f3dcc9
 
 
 
1de8d65
8f3dcc9
bf48682
 
 
 
 
 
ed63b7d
 
 
 
 
35eafc3
3a0bd05
 
9b178fc
35eafc3
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3dcc9
 
 
bf48682
8f3dcc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf48682
 
8f3dcc9
bf48682
 
 
8f3dcc9
1de8d65
8f3dcc9
bf48682
 
 
 
 
 
8f3dcc9
 
 
 
1de8d65
8f3dcc9
 
35eafc3
 
 
 
 
 
 
 
 
8f3dcc9
35eafc3
 
 
 
 
 
 
 
8f3dcc9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from __future__ import annotations

import asyncio
from io import BytesIO
import logging
from typing import TYPE_CHECKING, Annotated

import av.error
from fastapi import (
    APIRouter,
    Depends,
    Form,
    Query,
    Request,
    Response,
    UploadFile,
    WebSocket,
    WebSocketDisconnect,
)
from fastapi.exceptions import HTTPException
from fastapi.responses import StreamingResponse
from fastapi.websockets import WebSocketState
from faster_whisper.audio import decode_audio
from faster_whisper.transcribe import BatchedInferencePipeline
from faster_whisper.vad import VadOptions, get_speech_timestamps
from numpy import float32
from numpy.typing import NDArray
from pydantic import AfterValidator, Field

from speaches.api_models import (
    DEFAULT_TIMESTAMP_GRANULARITIES,
    TIMESTAMP_GRANULARITIES_COMBINATIONS,
    CreateTranscriptionResponseJson,
    CreateTranscriptionResponseVerboseJson,
    TimestampGranularities,
    TranscriptionSegment,
)
from speaches.asr import FasterWhisperASR
from speaches.audio import AudioStream, audio_samples_from_file
from speaches.config import (
    SAMPLES_PER_SECOND,
    Language,
    ResponseFormat,
    Task,
)
from speaches.dependencies import ConfigDependency, ModelManagerDependency, get_config
from speaches.text_utils import segments_to_srt, segments_to_text, segments_to_vtt
from speaches.transcriber import audio_transcriber

if TYPE_CHECKING:
    from collections.abc import Generator, Iterable

    from faster_whisper.transcribe import TranscriptionInfo


logger = logging.getLogger(__name__)

router = APIRouter(tags=["automatic-speech-recognition"])


# TODO: test async vs sync performance
def audio_file_dependency(
    file: Annotated[UploadFile, Form()],
) -> NDArray[float32]:
    try:
        audio = decode_audio(file.file)
    except av.error.InvalidDataError as e:
        raise HTTPException(
            status_code=415,
            detail="Failed to decode audio. The provided file type is not supported.",
        ) from e
    except av.error.ValueError as e:
        raise HTTPException(
            status_code=400,
            # TODO: list supported file types
            detail="Failed to decode audio. The provided file is likely empty.",
        ) from e
    except Exception as e:
        logger.exception(
            "Failed to decode audio. This is likely a bug. Please create an issue at https://github.com/speaches-ai/speaches/issues/new."
        )
        raise HTTPException(status_code=500, detail="Failed to decode audio.") from e
    else:
        return audio  # pyright: ignore reportReturnType


AudioFileDependency = Annotated[NDArray[float32], Depends(audio_file_dependency)]


def segments_to_response(
    segments: Iterable[TranscriptionSegment],
    transcription_info: TranscriptionInfo,
    response_format: ResponseFormat,
) -> Response:
    segments = list(segments)
    match response_format:
        case ResponseFormat.TEXT:
            return Response(segments_to_text(segments), media_type="text/plain")
        case ResponseFormat.JSON:
            return Response(
                CreateTranscriptionResponseJson.from_segments(segments).model_dump_json(),
                media_type="application/json",
            )
        case ResponseFormat.VERBOSE_JSON:
            return Response(
                CreateTranscriptionResponseVerboseJson.from_segments(segments, transcription_info).model_dump_json(),
                media_type="application/json",
            )
        case ResponseFormat.VTT:
            return Response(
                "".join(segments_to_vtt(segment, i) for i, segment in enumerate(segments)), media_type="text/vtt"
            )
        case ResponseFormat.SRT:
            return Response(
                "".join(segments_to_srt(segment, i) for i, segment in enumerate(segments)), media_type="text/plain"
            )


def format_as_sse(data: str) -> str:
    return f"data: {data}\n\n"


def segments_to_streaming_response(
    segments: Iterable[TranscriptionSegment],
    transcription_info: TranscriptionInfo,
    response_format: ResponseFormat,
) -> StreamingResponse:
    def segment_responses() -> Generator[str, None, None]:
        for i, segment in enumerate(segments):
            if response_format == ResponseFormat.TEXT:
                data = segment.text
            elif response_format == ResponseFormat.JSON:
                data = CreateTranscriptionResponseJson.from_segments([segment]).model_dump_json()
            elif response_format == ResponseFormat.VERBOSE_JSON:
                data = CreateTranscriptionResponseVerboseJson.from_segment(
                    segment, transcription_info
                ).model_dump_json()
            elif response_format == ResponseFormat.VTT:
                data = segments_to_vtt(segment, i)
            elif response_format == ResponseFormat.SRT:
                data = segments_to_srt(segment, i)
            yield format_as_sse(data)

    return StreamingResponse(segment_responses(), media_type="text/event-stream")


def handle_default_openai_model(model_name: str) -> str:
    """Exists because some callers may not be able override the default("whisper-1") model name.

    For example, https://github.com/open-webui/open-webui/issues/2248#issuecomment-2162997623.
    """
    config = get_config()  # HACK
    if model_name == "whisper-1":
        logger.info(f"{model_name} is not a valid model name. Using {config.whisper.model} instead.")
        return config.whisper.model
    return model_name


ModelName = Annotated[
    str,
    AfterValidator(handle_default_openai_model),
    Field(
        description="The ID of the model. You can get a list of available models by calling `/v1/models`.",
        examples=[
            "Systran/faster-distil-whisper-large-v3",
            "bofenghuang/whisper-large-v2-cv11-french-ct2",
        ],
    ),
]


@router.post(
    "/v1/audio/translations",
    response_model=str | CreateTranscriptionResponseJson | CreateTranscriptionResponseVerboseJson,
)
def translate_file(
    config: ConfigDependency,
    model_manager: ModelManagerDependency,
    audio: AudioFileDependency,
    model: Annotated[ModelName | None, Form()] = None,
    prompt: Annotated[str | None, Form()] = None,
    response_format: Annotated[ResponseFormat | None, Form()] = None,
    temperature: Annotated[float, Form()] = 0.0,
    stream: Annotated[bool, Form()] = False,
    vad_filter: Annotated[bool, Form()] = False,
) -> Response | StreamingResponse:
    if model is None:
        model = config.whisper.model
    if response_format is None:
        response_format = config.default_response_format
    with model_manager.load_model(model) as whisper:
        whisper_model = BatchedInferencePipeline(model=whisper) if config.whisper.use_batched_mode else whisper
        segments, transcription_info = whisper_model.transcribe(
            audio,
            task=Task.TRANSLATE,
            initial_prompt=prompt,
            temperature=temperature,
            vad_filter=vad_filter,
        )
        segments = TranscriptionSegment.from_faster_whisper_segments(segments)

        if stream:
            return segments_to_streaming_response(segments, transcription_info, response_format)
        else:
            return segments_to_response(segments, transcription_info, response_format)


# HACK: Since Form() doesn't support `alias`, we need to use a workaround.
async def get_timestamp_granularities(request: Request) -> TimestampGranularities:
    form = await request.form()
    if form.get("timestamp_granularities[]") is None:
        return DEFAULT_TIMESTAMP_GRANULARITIES
    timestamp_granularities = form.getlist("timestamp_granularities[]")
    assert (
        timestamp_granularities in TIMESTAMP_GRANULARITIES_COMBINATIONS
    ), f"{timestamp_granularities} is not a valid value for `timestamp_granularities[]`."
    return timestamp_granularities


# https://platform.openai.com/docs/api-reference/audio/createTranscription
# https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915
@router.post(
    "/v1/audio/transcriptions",
    response_model=str | CreateTranscriptionResponseJson | CreateTranscriptionResponseVerboseJson,
)
def transcribe_file(
    config: ConfigDependency,
    model_manager: ModelManagerDependency,
    request: Request,
    audio: AudioFileDependency,
    model: Annotated[ModelName | None, Form()] = None,
    language: Annotated[Language | None, Form()] = None,
    prompt: Annotated[str | None, Form()] = None,
    response_format: Annotated[ResponseFormat | None, Form()] = None,
    temperature: Annotated[float, Form()] = 0.0,
    timestamp_granularities: Annotated[
        TimestampGranularities,
        # WARN: `alias` doesn't actually work.
        Form(alias="timestamp_granularities[]"),
    ] = ["segment"],
    stream: Annotated[bool, Form()] = False,
    hotwords: Annotated[str | None, Form()] = None,
    vad_filter: Annotated[bool, Form()] = False,
) -> Response | StreamingResponse:
    if model is None:
        model = config.whisper.model
    if language is None:
        language = config.default_language
    if response_format is None:
        response_format = config.default_response_format
    timestamp_granularities = asyncio.run(get_timestamp_granularities(request))
    if timestamp_granularities != DEFAULT_TIMESTAMP_GRANULARITIES and response_format != ResponseFormat.VERBOSE_JSON:
        logger.warning(
            "It only makes sense to provide `timestamp_granularities[]` when `response_format` is set to `verbose_json`. See https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-timestamp_granularities."  # noqa: E501
        )
    with model_manager.load_model(model) as whisper:
        whisper_model = BatchedInferencePipeline(model=whisper) if config.whisper.use_batched_mode else whisper
        segments, transcription_info = whisper_model.transcribe(
            audio,
            task=Task.TRANSCRIBE,
            language=language,
            initial_prompt=prompt,
            word_timestamps="word" in timestamp_granularities,
            temperature=temperature,
            vad_filter=vad_filter,
            hotwords=hotwords,
        )
        segments = TranscriptionSegment.from_faster_whisper_segments(segments)

        if stream:
            return segments_to_streaming_response(segments, transcription_info, response_format)
        else:
            return segments_to_response(segments, transcription_info, response_format)


async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None:
    config = get_config()  # HACK
    try:
        while True:
            bytes_ = await asyncio.wait_for(ws.receive_bytes(), timeout=config.max_no_data_seconds)
            logger.debug(f"Received {len(bytes_)} bytes of audio data")
            audio_samples = audio_samples_from_file(BytesIO(bytes_))
            audio_stream.extend(audio_samples)
            if audio_stream.duration - config.inactivity_window_seconds >= 0:
                audio = audio_stream.after(audio_stream.duration - config.inactivity_window_seconds)
                vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
                # NOTE: This is a synchronous operation that runs every time new data is received.
                # This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato.  # noqa: E501
                timestamps = get_speech_timestamps(audio.data, vad_opts)
                if len(timestamps) == 0:
                    logger.info(f"No speech detected in the last {config.inactivity_window_seconds} seconds.")
                    break
                elif (
                    # last speech end time
                    config.inactivity_window_seconds - timestamps[-1]["end"] / SAMPLES_PER_SECOND
                    >= config.max_inactivity_seconds
                ):
                    logger.info(f"Not enough speech in the last {config.inactivity_window_seconds} seconds.")
                    break
    except TimeoutError:
        logger.info(f"No data received in {config.max_no_data_seconds} seconds. Closing the connection.")
    except WebSocketDisconnect as e:
        logger.info(f"Client disconnected: {e}")
    audio_stream.close()


@router.websocket("/v1/audio/transcriptions")
async def transcribe_stream(
    config: ConfigDependency,
    model_manager: ModelManagerDependency,
    ws: WebSocket,
    model: Annotated[ModelName | None, Query()] = None,
    language: Annotated[Language | None, Query()] = None,
    response_format: Annotated[ResponseFormat | None, Query()] = None,
    temperature: Annotated[float, Query()] = 0.0,
    vad_filter: Annotated[bool, Query()] = False,
) -> None:
    if model is None:
        model = config.whisper.model
    if language is None:
        language = config.default_language
    if response_format is None:
        response_format = config.default_response_format
    await ws.accept()
    transcribe_opts = {
        "language": language,
        "temperature": temperature,
        "vad_filter": vad_filter,
        "condition_on_previous_text": False,
    }
    with model_manager.load_model(model) as whisper:
        asr = FasterWhisperASR(whisper, **transcribe_opts)
        audio_stream = AudioStream()
        async with asyncio.TaskGroup() as tg:
            tg.create_task(audio_receiver(ws, audio_stream))
            async for transcription in audio_transcriber(asr, audio_stream, min_duration=config.min_duration):
                logger.debug(f"Sending transcription: {transcription.text}")
                if ws.client_state == WebSocketState.DISCONNECTED:
                    break

                if response_format == ResponseFormat.TEXT:
                    await ws.send_text(transcription.text)
                elif response_format == ResponseFormat.JSON:
                    await ws.send_json(CreateTranscriptionResponseJson.from_transcription(transcription).model_dump())
                elif response_format == ResponseFormat.VERBOSE_JSON:
                    await ws.send_json(
                        CreateTranscriptionResponseVerboseJson.from_transcription(transcription).model_dump()
                    )

    if ws.client_state != WebSocketState.DISCONNECTED:
        logger.info("Closing the connection.")
        await ws.close()