Fedir Zadniprovskyi
feat: gradio speech generation tab
3344380
raw
history blame
8.61 kB
from collections.abc import Generator
from functools import cached_property, lru_cache
import json
import logging
from pathlib import Path
import typing
from typing import Any, Literal
import huggingface_hub
from huggingface_hub.constants import HF_HUB_CACHE
from pydantic import BaseModel, Field, computed_field
from faster_whisper_server.api_models import Model
logger = logging.getLogger(__name__)
LIBRARY_NAME = "ctranslate2"
TASK_NAME = "automatic-speech-recognition"
def does_local_model_exist(model_id: str) -> bool:
return any(model_id == model.repo_id for model, _ in list_local_whisper_models())
def list_whisper_models() -> Generator[Model, None, None]:
models = huggingface_hub.list_models(library="ctranslate2", tags="automatic-speech-recognition", cardData=True)
models = list(models)
models.sort(key=lambda model: model.downloads or -1, reverse=True)
for model in models:
assert model.created_at is not None
assert model.card_data is not None
assert model.card_data.language is None or isinstance(model.card_data.language, str | list)
if model.card_data.language is None:
language = []
elif isinstance(model.card_data.language, str):
language = [model.card_data.language]
else:
language = model.card_data.language
transformed_model = Model(
id=model.id,
created=int(model.created_at.timestamp()),
object_="model",
owned_by=model.id.split("/")[0],
language=language,
)
yield transformed_model
def list_local_whisper_models() -> (
Generator[tuple[huggingface_hub.CachedRepoInfo, huggingface_hub.ModelCardData], None, None]
):
hf_cache = huggingface_hub.scan_cache_dir()
hf_models = [repo for repo in list(hf_cache.repos) if repo.repo_type == "model"]
for model in hf_models:
revision = next(iter(model.revisions))
cached_readme_file = next((f for f in revision.files if f.file_name == "README.md"), None)
if cached_readme_file:
readme_file_path = Path(cached_readme_file.file_path)
else:
# NOTE: the README.md doesn't get downloaded when `WhisperModel` is called
logger.debug(f"Model {model.repo_id} does not have a README.md file. Downloading it.")
readme_file_path = Path(huggingface_hub.hf_hub_download(model.repo_id, "README.md"))
model_card = huggingface_hub.ModelCard.load(readme_file_path)
model_card_data = typing.cast(huggingface_hub.ModelCardData, model_card.data)
if (
model_card_data.library_name == LIBRARY_NAME
and model_card_data.tags is not None
and TASK_NAME in model_card_data.tags
):
yield model, model_card_data
def get_whisper_models() -> Generator[Model, None, None]:
models = huggingface_hub.list_models(library="ctranslate2", tags="automatic-speech-recognition", cardData=True)
models = list(models)
models.sort(key=lambda model: model.downloads or -1, reverse=True)
for model in models:
assert model.created_at is not None
assert model.card_data is not None
assert model.card_data.language is None or isinstance(model.card_data.language, str | list)
if model.card_data.language is None:
language = []
elif isinstance(model.card_data.language, str):
language = [model.card_data.language]
else:
language = model.card_data.language
transformed_model = Model(
id=model.id,
created=int(model.created_at.timestamp()),
object_="model",
owned_by=model.id.split("/")[0],
language=language,
)
yield transformed_model
PiperVoiceQuality = Literal["x_low", "low", "medium", "high"]
PIPER_VOICE_QUALITY_SAMPLE_RATE_MAP: dict[PiperVoiceQuality, int] = {
"x_low": 16000,
"low": 22050,
"medium": 22050,
"high": 22050,
}
class PiperModel(BaseModel):
"""Similar structure to the GET /v1/models response but with extra fields."""
object: Literal["model"] = "model"
created: int
owned_by: Literal["rhasspy"] = "rhasspy"
model_path: Path = Field(
examples=[
"/home/nixos/.cache/huggingface/hub/models--rhasspy--piper-voices/snapshots/3d796cc2f2c884b3517c527507e084f7bb245aea/en/en_US/amy/medium/en_US-amy-medium.onnx"
]
)
@computed_field(examples=["rhasspy/piper-voices/en_US-amy-medium"])
@cached_property
def id(self) -> str:
return f"rhasspy/piper-voices/{self.model_path.name.removesuffix(".onnx")}"
@computed_field(examples=["rhasspy/piper-voices/en_US-amy-medium"])
@cached_property
def voice(self) -> str:
return self.model_path.name.removesuffix(".onnx")
@computed_field
@cached_property
def config_path(self) -> Path:
return Path(str(self.model_path) + ".json")
@computed_field
@cached_property
def quality(self) -> PiperVoiceQuality:
return self.id.split("-")[-1] # pyright: ignore[reportReturnType]
@computed_field
@cached_property
def sample_rate(self) -> int:
return PIPER_VOICE_QUALITY_SAMPLE_RATE_MAP[self.quality]
def get_model_path(model_id: str, *, cache_dir: str | Path | None = None) -> Path | None:
if cache_dir is None:
cache_dir = HF_HUB_CACHE
cache_dir = Path(cache_dir).expanduser().resolve()
if not cache_dir.exists():
raise huggingface_hub.CacheNotFound(
f"Cache directory not found: {cache_dir}. Please use `cache_dir` argument or set `HF_HUB_CACHE` environment variable.", # noqa: E501
cache_dir=cache_dir,
)
if cache_dir.is_file():
raise ValueError(
f"Scan cache expects a directory but found a file: {cache_dir}. Please use `cache_dir` argument or set `HF_HUB_CACHE` environment variable." # noqa: E501
)
for repo_path in cache_dir.iterdir():
if not repo_path.is_dir():
continue
if repo_path.name == ".locks": # skip './.locks/' folder
continue
repo_type, repo_id = repo_path.name.split("--", maxsplit=1)
repo_type = repo_type[:-1] # "models" -> "model"
repo_id = repo_id.replace("--", "/") # google--fleurs -> "google/fleurs"
if repo_type != "model":
continue
if model_id == repo_id:
return repo_path
return None
def list_model_files(
model_id: str, glob_pattern: str = "**/*", *, cache_dir: str | Path | None = None
) -> Generator[Path, None, None]:
repo_path = get_model_path(model_id, cache_dir=cache_dir)
if repo_path is None:
return None
snapshots_path = repo_path / "snapshots"
if not snapshots_path.exists():
return None
yield from list(snapshots_path.glob(glob_pattern))
def list_piper_models() -> Generator[PiperModel, None, None]:
model_weights_files = list_model_files("rhasspy/piper-voices", glob_pattern="**/*.onnx")
for model_weights_file in model_weights_files:
yield PiperModel(
created=int(model_weights_file.stat().st_mtime),
model_path=model_weights_file,
)
# NOTE: It's debatable whether caching should be done here or by the caller. Should be revisited.
@lru_cache
def read_piper_voices_config() -> dict[str, Any]:
voices_file = next(list_model_files("rhasspy/piper-voices", glob_pattern="**/voices.json"), None)
if voices_file is None:
raise FileNotFoundError("Could not find voices.json file") # noqa: EM101
return json.loads(voices_file.read_text())
@lru_cache
def get_piper_voice_model_file(voice: str) -> Path:
model_file = next(list_model_files("rhasspy/piper-voices", glob_pattern=f"**/{voice}.onnx"), None)
if model_file is None:
raise FileNotFoundError(f"Could not find model file for '{voice}' voice")
return model_file
class PiperVoiceConfigAudio(BaseModel):
sample_rate: int
quality: int
class PiperVoiceConfig(BaseModel):
audio: PiperVoiceConfigAudio
# NOTE: there are more fields in the config, but we don't care about them
@lru_cache
def read_piper_voice_config(voice: str) -> PiperVoiceConfig:
model_config_file = next(list_model_files("rhasspy/piper-voices", glob_pattern=f"**/{voice}.onnx.json"), None)
if model_config_file is None:
raise FileNotFoundError(f"Could not find config file for '{voice}' voice")
return PiperVoiceConfig.model_validate_json(model_config_file.read_text())