Spaces:
Runtime error
Runtime error
ilia_khristoforov
commited on
Commit
·
d775f5c
1
Parent(s):
1e5e466
изменено: app.py
Browse files
app.py
CHANGED
@@ -1,287 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
import time
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
from langchain.text_splitter import CharacterTextSplitter
|
7 |
-
from langchain.llms import OpenAI
|
8 |
-
from langchain.embeddings import OpenAIEmbeddings
|
9 |
-
from langchain.vectorstores import Chroma
|
10 |
-
from langchain.chains import ConversationalRetrievalChain
|
11 |
-
from langchain import PromptTemplate
|
12 |
-
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
13 |
-
import requests
|
14 |
-
from PIL import Image
|
15 |
-
import torch
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
20 |
-
# Chat History:
|
21 |
-
# {chat_history}
|
22 |
-
# Follow Up Input: {question}
|
23 |
-
# Standalone question:"""
|
24 |
-
|
25 |
-
# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
26 |
-
|
27 |
-
# template = """
|
28 |
-
# You are given the following extracted parts of a long document and a question. Provide a short structured answer.
|
29 |
-
# If you don't know the answer, look on the web. Don't try to make up an answer.
|
30 |
-
# Question: {question}
|
31 |
-
# =========
|
32 |
-
# {context}
|
33 |
-
# =========
|
34 |
-
# Answer in Markdown:"""
|
35 |
-
|
36 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
|
37 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
|
38 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
|
39 |
-
torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')
|
40 |
-
|
41 |
-
|
42 |
-
model_name = "google/matcha-chartqa"
|
43 |
-
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
44 |
-
processor = Pix2StructProcessor.from_pretrained(model_name)
|
45 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
-
model.to(device)
|
47 |
-
|
48 |
-
def filter_output(output):
|
49 |
-
return output.replace("<0x0A>", "")
|
50 |
-
|
51 |
-
def chart_qa(image, question):
|
52 |
-
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
|
53 |
-
predictions = model.generate(**inputs, max_new_tokens=512)
|
54 |
-
return filter_output(processor.decode(predictions[0], skip_special_tokens=True))
|
55 |
-
|
56 |
-
def loading_pdf():
|
57 |
-
return "Loading..."
|
58 |
-
|
59 |
-
|
60 |
-
def pdf_changes(pdf_doc, open_ai_key):
|
61 |
-
if open_ai_key is not None:
|
62 |
-
os.environ['OPENAI_API_KEY'] = open_ai_key
|
63 |
-
loader = OnlinePDFLoader(pdf_doc.name)
|
64 |
-
documents = loader.load()
|
65 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
66 |
-
texts = text_splitter.split_documents(documents)
|
67 |
-
embeddings = OpenAIEmbeddings()
|
68 |
-
db = Chroma.from_documents(texts, embeddings)
|
69 |
-
retriever = db.as_retriever()
|
70 |
-
global qa
|
71 |
-
qa = ConversationalRetrievalChain.from_llm(
|
72 |
-
llm=OpenAI(temperature=0.5),
|
73 |
-
retriever=retriever,
|
74 |
-
return_source_documents=True)
|
75 |
-
return "Ready"
|
76 |
-
else:
|
77 |
-
return "You forgot OpenAI API key"
|
78 |
-
|
79 |
-
def add_text(history, text):
|
80 |
-
history = history + [(text, None)]
|
81 |
-
return history, ""
|
82 |
-
|
83 |
-
def bot(history):
|
84 |
-
response = infer(history[-1][0], history)
|
85 |
-
history[-1][1] = ""
|
86 |
-
|
87 |
-
for character in response:
|
88 |
-
history[-1][1] += character
|
89 |
-
time.sleep(0.05)
|
90 |
-
yield history
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
res = []
|
95 |
-
for human, ai in history[:-1]:
|
96 |
-
pair = (human, ai)
|
97 |
-
res.append(pair)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
query = question
|
102 |
-
result = qa({"question": query, "chat_history": chat_history})
|
103 |
-
#print(result)
|
104 |
-
return result["answer"]
|
105 |
-
|
106 |
-
css="""
|
107 |
-
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
108 |
-
"""
|
109 |
-
|
110 |
-
title = """
|
111 |
-
<div style="text-align: center;">
|
112 |
-
<h1>YnP LangChain Test </h1>
|
113 |
-
<p style="text-align: center;">Please specify OpenAI Key before use</p>
|
114 |
-
</div>
|
115 |
-
"""
|
116 |
-
|
117 |
-
|
118 |
-
# with gr.Blocks(css=css) as demo:
|
119 |
-
# with gr.Column(elem_id="col-container"):
|
120 |
-
# gr.HTML(title)
|
121 |
-
|
122 |
-
# with gr.Column():
|
123 |
-
# openai_key = gr.Textbox(label="You OpenAI API key", type="password")
|
124 |
-
# pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
125 |
-
# with gr.Row():
|
126 |
-
# langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
127 |
-
# load_pdf = gr.Button("Load pdf to langchain")
|
128 |
-
|
129 |
-
# chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
130 |
-
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
131 |
-
# submit_btn = gr.Button("Send Message")
|
132 |
-
|
133 |
-
# load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
134 |
-
# load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
|
135 |
-
# question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
136 |
-
# bot, chatbot, chatbot
|
137 |
-
# )
|
138 |
-
# submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
139 |
-
# bot, chatbot, chatbot)
|
140 |
-
|
141 |
-
# demo.launch()
|
142 |
-
|
143 |
-
|
144 |
-
"""functions"""
|
145 |
-
|
146 |
-
def load_file():
|
147 |
-
return "Loading..."
|
148 |
-
|
149 |
-
def load_xlsx(name):
|
150 |
-
import pandas as pd
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
return data
|
155 |
-
|
156 |
-
def table_loader(table_file, open_ai_key):
|
157 |
-
import os
|
158 |
-
from langchain.llms import OpenAI
|
159 |
-
from langchain.agents import create_pandas_dataframe_agent
|
160 |
-
from pandas import read_csv
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
os.environ['OPENAI_API_KEY'] = open_ai_key
|
165 |
-
else:
|
166 |
-
return "Enter API"
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
|
175 |
-
return "Ready!"
|
176 |
-
else:
|
177 |
-
return "Wrong file format! Upload excel file or csv!"
|
178 |
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
187 |
|
188 |
-
|
189 |
-
|
|
|
|
|
190 |
|
191 |
-
bot_message =
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
195 |
|
|
|
|
|
196 |
|
197 |
with gr.Blocks() as demo:
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
show_label=False,
|
202 |
-
placeholder="Your OpenAI key",
|
203 |
-
type = 'password',
|
204 |
-
).style(container=False)
|
205 |
-
|
206 |
-
# PDF processing tab
|
207 |
-
with gr.Tab("PDFs"):
|
208 |
-
|
209 |
-
with gr.Row():
|
210 |
-
|
211 |
-
with gr.Column(scale=0.5):
|
212 |
-
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
213 |
-
load_pdf = gr.Button("Load pdf to langchain")
|
214 |
-
|
215 |
-
with gr.Column(scale=0.5):
|
216 |
-
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
217 |
-
|
218 |
-
|
219 |
-
with gr.Row():
|
220 |
-
|
221 |
-
with gr.Column(scale=1):
|
222 |
-
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
223 |
-
|
224 |
-
with gr.Row():
|
225 |
-
|
226 |
-
with gr.Column(scale=0.85):
|
227 |
-
question = gr.Textbox(
|
228 |
-
show_label=False,
|
229 |
-
placeholder="Enter text and press enter, or upload an image",
|
230 |
-
).style(container=False)
|
231 |
-
|
232 |
-
with gr.Column(scale=0.15, min_width=0):
|
233 |
-
clr_btn = gr.Button("Clear!")
|
234 |
-
|
235 |
-
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
236 |
-
load_pdf.click(pdf_changes, inputs=[pdf_doc, key], outputs=[langchain_status], queue=True)
|
237 |
-
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
238 |
-
bot, chatbot, chatbot
|
239 |
-
)
|
240 |
-
|
241 |
-
# XLSX and CSV processing tab
|
242 |
-
with gr.Tab("Spreadsheets"):
|
243 |
-
with gr.Row():
|
244 |
-
|
245 |
-
with gr.Column(scale=0.5):
|
246 |
-
status_sh = gr.Textbox(label="Status", placeholder="", interactive=False)
|
247 |
-
load_table = gr.Button("Load csv|xlsx to langchain")
|
248 |
-
|
249 |
-
with gr.Column(scale=0.5):
|
250 |
-
raw_table = gr.File(label="Load a table file (xls or csv)", file_types=['.csv, xlsx, xls'], type="file")
|
251 |
-
|
252 |
-
|
253 |
-
with gr.Row():
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
).style(container=False)
|
266 |
-
|
267 |
-
with gr.Column(scale=0.15, min_width=0):
|
268 |
-
clr_btn = gr.Button("Clear!")
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
with gr.Tab("Charts"):
|
278 |
-
image = gr.Image(type="pil", label="Chart")
|
279 |
-
question = gr.Textbox(label="Question")
|
280 |
-
load_chart = gr.Button("Load chart and question!")
|
281 |
-
answer = gr.Textbox(label="Model Output")
|
282 |
-
|
283 |
-
load_chart.click(chart_qa, [image, question], answer)
|
284 |
|
285 |
-
|
286 |
-
demo.queue(concurrency_count=3)
|
287 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import time
|
3 |
+
from utils import Bot
|
4 |
+
from utils.functions import make_documents, make_descriptions
|
5 |
|
6 |
+
def init_bot(file=None,title=None,pdf=None,key=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
if key is None:
|
9 |
+
return 'You must submit OpenAI key'
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
if pdf is None:
|
12 |
+
return 'You must submit pdf file'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
if file is None:
|
15 |
+
return 'You must submit media file'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
if title is None:
|
18 |
+
return 'You must submit the description of the media'
|
|
|
|
|
|
|
19 |
|
20 |
+
file = file.name
|
21 |
+
print(file)
|
22 |
+
pdf = pdf.name
|
23 |
+
file_description = make_descriptions(file, title)
|
24 |
+
# print(file_description)
|
25 |
+
documents = make_documents(pdf)
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# print(documents[0])
|
28 |
+
global bot
|
29 |
|
30 |
+
bot = Bot(
|
31 |
+
openai_api_key=key,
|
32 |
+
file_descriptions=file_description,
|
33 |
+
text_documents=documents,
|
34 |
+
verbose=False
|
35 |
+
)
|
36 |
|
37 |
+
return 'Chat bot successfully initialized'
|
38 |
+
|
39 |
+
def msg_bot(history):
|
40 |
+
message = history[-1][0]
|
41 |
|
42 |
+
bot_message = bot(message)['output']
|
43 |
+
history[-1][1] = ""
|
44 |
+
for character in bot_message:
|
45 |
+
history[-1][1] += character
|
46 |
+
time.sleep(0.05)
|
47 |
+
yield history
|
48 |
|
49 |
+
def user(user_message, history):
|
50 |
+
return "", history + [[user_message, None]]
|
51 |
|
52 |
with gr.Blocks() as demo:
|
53 |
+
|
54 |
+
key = gr.Textbox(label='OpenAI key')
|
55 |
+
with gr.Tab("Chat bot initialization"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
with gr.Row(variant='panel'):
|
58 |
+
with gr.Column():
|
59 |
+
with gr.Row():
|
60 |
+
title = gr.Textbox(label='File short description')
|
61 |
+
with gr.Row():
|
62 |
+
file = gr.File(label='CSV or image', file_types=['.csv', 'image'])
|
63 |
+
|
64 |
+
pdf = gr.File(label='pdf')
|
65 |
|
66 |
+
with gr.Row(variant='panel'):
|
67 |
+
init_button = gr.Button('submit')
|
68 |
+
init_output = gr.Textbox(label="Initialization status")
|
69 |
+
init_button.click(fn=init_bot,inputs=[file,title,pdf,key],outputs=init_output,api_name='init')
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
chatbot = gr.Chatbot()
|
72 |
+
msg = gr.Textbox(label='Ask the bot')
|
73 |
+
clear = gr.Button('Clear')
|
74 |
+
msg.submit(user,[msg,chatbot],[msg,chatbot],queue=False).then(
|
75 |
+
msg_bot, chatbot, chatbot
|
76 |
+
)
|
77 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
78 |
+
|
79 |
+
demo.queue()
|
80 |
+
demo.launch()
|
81 |
+
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
|
|
|