File size: 5,037 Bytes
136d4c3
0311782
 
 
 
136d4c3
0311782
136d4c3
 
 
 
adf5315
 
0311782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
title: ImageGenerator
emoji: 馃槃
colorFrom: indigo
colorTo: gray
sdk: gradio
sdk_version: 3.17.0
app_file: app.py
pinned: false
---

> **DOES NOT WORK WITH THE CURRENT SPACE AS THE MEMORY USAGE EXCEEDED THE LIMIT (FOR OBVIOUS REASON).**

# Image Generator

## Description

### About

A simple application to generate images with the limitation of the algorithm, dataset, hardware specification, chosen limited configuration, and other various variables.

1. "Text prompt" textbox to enter text description of desired image
2. "Run" button (or keyboard ENTER button) to confirm input
3. Result placeholder the place for generated image

### Notes

- Optimisation only using Distributed Shampoo
- The dataset is limited to CelebA-HQ
- The training is only tracked by epoch
- Only logs learning rate and loss
- Encoding, training, and inference can be run in any free plan Colab, Kaggle, and Gradient

---

## Guide

### How to use

Users input either free-form text in the textbox or choose one or several attribute options in the form of radio buttons and checkboxes then press the RUN button to confirm them. Then the user waits until the desired image is generated and shown in the previously empty placeholder.

---

## References

### Papers

```text
@misc{
  title={Zero-Shot Text-to-Image Generation},
  author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
  year={2021},
  eprint={2102.12092},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  link={[]()}
}
```

### Datasets

```text
@inproceedings{CelebAMask-HQ,
  title={MaskGAN: Towards Diverse and Interactive Facial Image Manipulation},
  author={Lee, Cheng-Han and Liu, Ziwei and Wu, Lingyun and Luo, Ping},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}
```

```text
@inproceedings{xia2021tedigan,
  title={TediGAN: Text-Guided Diverse Face Image Generation and Manipulation},
  author={Xia, Weihao and Yang, Yujiu and Xue, Jing-Hao and Wu, Baoyuan},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

@article{xia2021open,
  title={Towards Open-World Text-Guided Face Image Generation and Manipulation},
  author={Xia, Weihao and Yang, Yujiu and Xue, Jing-Hao and Wu, Baoyuan},
  journal={arxiv preprint arxiv: 2104.08910},
  year={2021}
}

@inproceedings{karras2017progressive,
  title={Progressive growing of gans for improved quality, stability, and variation},
  author={Karras, Tero and Aila, Timo and Laine, Samuli and Lehtinen, Jaakko},
  journal={International Conference on Learning Representations (ICLR)},
  year={2018}
}

@inproceedings{liu2015faceattributes,
 title = {Deep Learning Face Attributes in the Wild},
 author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
 booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
 year = {2015} 
}
```

### Codes and Libraries

```text
@misc{Dayma_DALL路E_Mini_2021,
      author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and L锚 Kh岷痗, Ph煤c and Melas, Luke and Ghosh, Ritobrata},
      doi = {10.5281/zenodo.5146400},
      month = {7},
      title = {DALL路E Mini},
      url = {https://github.com/borisdayma/dalle-mini},
      year = {2021}
}
```

```text
@software{jax2018github,
  author = {James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson and Chris Leary and Dougal Maclaurin and George Necula and Adam Paszke and Jake Vander{P}las and Skye Wanderman-{M}ilne and Qiao Zhang},
  title = {{JAX}: composable transformations of {P}ython+{N}um{P}y programs},
  url = {http://github.com/google/jax},
  version = {0.3.13},
  year = {2018},
}
```

```text
@misc{esser2020taming,
  title={Taming Transformers for High-Resolution Image Synthesis}, 
  author={Patrick Esser and Robin Rombach and Bj枚rn Ommer},
  year={2020},
  eprint={2012.09841},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
```

### Others

- [Gradio documentation](https://gradio.app/docs)

### Extra Explanation

- [DALL-E Mini: Powerful image generation in a tiny model](https://blog.paperspace.com/dalle-mini/)
- [How DALL-E Mini Works](https://towardsdatascience.com/understanding-how-dall-e-mini-works-114048912b3b)
- [Fine-tuning DALL路E Mini (Craiyon) to Generate Blogpost Images](https://medium.com/@turc.raluca/fine-tuning-dall-e-mini-craiyon-to-generate-blogpost-images-32903cc7aa52)
- [Talks S2E1: DALL路E mini - Generate images from a text prompt](https://www.youtube.com/watch?v=-tMnGA4x3kA)
- [DALL-E mini explained | min(DALL-E) | Craiyon | ML Coding Series](https://www.youtube.com/watch?v=x_8uHX5KngE)

---

## Tools Used

- [Google Colab](https://colab.research.google.com/)
- [Paperspace Gradient](https://www.paperspace.com/gradient)
- [Kaggle](https://www.kaggle.com/)
- [Figma](https://www.figma.com/)
- [Visual Studio Code Space in GitHub](https://github.com/)
- [Weights & Biases](https://wandb.ai/home)