Spaces:
Sleeping
Sleeping
Commit
·
aa9f8f2
1
Parent(s):
c006108
better versioning, best pratices
Browse files
main.py
CHANGED
@@ -1,18 +1,32 @@
|
|
1 |
from PIL import Image
|
2 |
-
from fastapi import FastAPI
|
3 |
-
from pydantic import BaseModel
|
4 |
from transformers import MBartForConditionalGeneration, MBartTokenizerFast
|
5 |
import torch
|
6 |
import requests, json, base64
|
7 |
from io import BytesIO
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
class TranslationRequest(BaseModel):
|
11 |
-
src: str
|
|
|
|
|
|
|
12 |
language: str
|
|
|
|
|
|
|
13 |
|
14 |
-
# Initialize FastAPI app
|
15 |
-
app = FastAPI()
|
16 |
|
17 |
# Load the model and tokenizer
|
18 |
model_path = "feedlight42/mbart25-text2picto"
|
@@ -27,10 +41,12 @@ with open('pictogram_vocab.json', 'r') as f:
|
|
27 |
pictogram_dict = json.load(f)
|
28 |
|
29 |
# Fetch a pictogram image from the ARASAAC API
|
30 |
-
def fetch_pictogram(picto_id):
|
31 |
url = f"https://api.arasaac.org/v1/pictograms/{picto_id}"
|
32 |
response = requests.get(url)
|
33 |
-
|
|
|
|
|
34 |
|
35 |
# Generate an image from a sequence of pictogram IDs
|
36 |
def create_pictogram_image(pictogram_ids):
|
@@ -54,44 +70,53 @@ def create_pictogram_image(pictogram_ids):
|
|
54 |
return final_image
|
55 |
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def translate(request: TranslationRequest):
|
59 |
-
"""
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
#
|
|
|
65 |
translated_tokens = model.generate(**inputs)
|
66 |
tgt_sentence = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
67 |
-
|
68 |
-
#
|
69 |
-
words = tgt_sentence.split()
|
70 |
pictogram_ids = [pictogram_dict.get(word.lower(), None) for word in words]
|
71 |
-
pictogram_ids = [picto_id for picto_id in pictogram_ids if picto_id
|
72 |
|
73 |
-
# Check if there are pictogram IDs
|
74 |
if pictogram_ids:
|
75 |
-
# Generate
|
76 |
final_image = create_pictogram_image(pictogram_ids)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
"tgt": tgt_sentence,
|
95 |
-
"pictograms": pictogram_ids,
|
96 |
-
"image_base64": None # No image if no pictograms were found
|
97 |
-
}
|
|
|
1 |
from PIL import Image
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
from transformers import MBartForConditionalGeneration, MBartTokenizerFast
|
5 |
import torch
|
6 |
import requests, json, base64
|
7 |
from io import BytesIO
|
8 |
+
from typing import Optional
|
9 |
|
10 |
+
|
11 |
+
# Initialize FastAPI app with versioning
|
12 |
+
app = FastAPI(
|
13 |
+
title="Text-to-Pictogram API",
|
14 |
+
version="1.0.0",
|
15 |
+
description="An API for converting text to pictograms, supporting English, French, and Tamil.",
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
# Define schemas for requests and responses
|
20 |
class TranslationRequest(BaseModel):
|
21 |
+
src: str = Field(..., description="Source text to be translated.")
|
22 |
+
language: str = Field(..., description="Language of the source text. Accepted values: 'en', 'fr', 'ta'.")
|
23 |
+
|
24 |
+
class TranslationResponse(BaseModel):
|
25 |
language: str
|
26 |
+
src: str
|
27 |
+
tgt: Optional[str] = None
|
28 |
+
image_base64: Optional[str] = None
|
29 |
|
|
|
|
|
30 |
|
31 |
# Load the model and tokenizer
|
32 |
model_path = "feedlight42/mbart25-text2picto"
|
|
|
41 |
pictogram_dict = json.load(f)
|
42 |
|
43 |
# Fetch a pictogram image from the ARASAAC API
|
44 |
+
def fetch_pictogram(picto_id: int):
|
45 |
url = f"https://api.arasaac.org/v1/pictograms/{picto_id}"
|
46 |
response = requests.get(url)
|
47 |
+
if response.status_code == 200:
|
48 |
+
return Image.open(BytesIO(response.content))
|
49 |
+
return None
|
50 |
|
51 |
# Generate an image from a sequence of pictogram IDs
|
52 |
def create_pictogram_image(pictogram_ids):
|
|
|
70 |
return final_image
|
71 |
|
72 |
|
73 |
+
# Endpoint for health check
|
74 |
+
@app.get("/health", summary="Health Check", response_description="Health status")
|
75 |
+
def health_check():
|
76 |
+
return {"status": "healthy", "message": "API is up and running"}
|
77 |
+
|
78 |
+
# Main translation endpoint
|
79 |
+
@app.post("/v1/translate", summary="Translate Text to Pictograms", response_model=TranslationResponse)
|
80 |
def translate(request: TranslationRequest):
|
81 |
+
if request.language not in ["en", "fr", "ta"]:
|
82 |
+
raise HTTPException(status_code=400, detail="Invalid language. Accepted values: 'en', 'fr', 'ta'.")
|
83 |
+
|
84 |
+
# Placeholder for unsupported languages
|
85 |
+
if request.language in ["en", "ta"]:
|
86 |
+
return TranslationResponse(
|
87 |
+
language=request.language,
|
88 |
+
src=request.src,
|
89 |
+
tgt=None,
|
90 |
+
image_base64=None,
|
91 |
+
)
|
92 |
|
93 |
+
# Translate using French model
|
94 |
+
inputs = tokenizer(request.src, return_tensors="pt", padding=True, truncation=True).to(device)
|
95 |
translated_tokens = model.generate(**inputs)
|
96 |
tgt_sentence = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
97 |
+
|
98 |
+
# Map translated sentence to pictograms
|
99 |
+
words = tgt_sentence.split()
|
100 |
pictogram_ids = [pictogram_dict.get(word.lower(), None) for word in words]
|
101 |
+
pictogram_ids = [picto_id for picto_id in pictogram_ids if picto_id]
|
102 |
|
|
|
103 |
if pictogram_ids:
|
104 |
+
# Generate pictogram image
|
105 |
final_image = create_pictogram_image(pictogram_ids)
|
106 |
+
if final_image:
|
107 |
+
img_byte_arr = BytesIO()
|
108 |
+
final_image.save(img_byte_arr, format="PNG")
|
109 |
+
encoded_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
110 |
+
return TranslationResponse(
|
111 |
+
language=request.language,
|
112 |
+
src=request.src,
|
113 |
+
tgt=tgt_sentence,
|
114 |
+
image_base64=encoded_image,
|
115 |
+
)
|
116 |
+
|
117 |
+
return TranslationResponse(
|
118 |
+
language=request.language,
|
119 |
+
src=request.src,
|
120 |
+
tgt=tgt_sentence,
|
121 |
+
image_base64=None,
|
122 |
+
)
|
|
|
|
|
|
|
|