File size: 4,397 Bytes
04f923c
 
 
 
 
 
 
 
 
 
 
 
 
67312ac
 
 
04f923c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67312ac
04f923c
 
 
 
67312ac
 
04f923c
 
 
 
 
 
67312ac
 
04f923c
 
67312ac
b79d85c
 
04f923c
 
67312ac
04f923c
 
b79d85c
 
 
04f923c
67312ac
b79d85c
04f923c
 
67312ac
 
04f923c
67312ac
04f923c
 
 
67312ac
b79d85c
 
 
 
04f923c
b79d85c
04f923c
 
 
 
67312ac
04f923c
 
b79d85c
 
67312ac
04f923c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67312ac
 
 
04f923c
 
 
 
 
 
 
 
 
 
67312ac
 
04f923c
 
 
67312ac
04f923c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import json
import torch
from dataclasses import dataclass

####################################
# SCRIPT ARGUMENTS
####################################

@dataclass
class ScriptArguments:
    """
    Arguments for the Bradley-Terry evaluation script.
    """
    old_generations_file: str
    new_generations_file: str   
    output_file: str = 'bt_results.json'


####################################
# FUNCTIONS
####################################

def load_rewards(file_path):
    """
    Load the rewards from a JSON file.

    Args:
        file_path (str): Path to the JSON file containing model generations and rewards.

    Returns:
        list: List of dictionaries with prompts, outputs, and rewards.
    """
    with open(file_path, 'r') as f:
        return json.load(f)


def bradley_terry_comparison(old_rewards, new_rewards):
    """
    Perform Bradley-Terry comparison between two sets of model generations.

    Args:
        old_rewards (list): List of dictionaries for the OLD model's generations and rewards.
        new_rewards (list): List of dictionaries for the NEW model's generations and rewards.

    Returns:
        list: Comparison results including preferred outputs and probabilities.
        dict: Metrics summary including percentage preferred and average probabilities.
    """
    results = []
    new_preferred_count = 0
    old_preferred_count = 0
    probabilities = []

    for ix in range(len(old_rewards)):
        old = old_rewards[ix]
        new = new_rewards[ix]

        # Ensure prompts match
        assert old['prompt'] == new['prompt'], f"ERROR: Prompts at index {ix} do not match."

        # Compute Bradley-Terry probability
        new_reward = torch.tensor(old['reward'], dtype=torch.float32)
        old_reward = torch.tensor(new['reward'], dtype=torch.float32)
        prob_new_preferred = torch.sigmoid(new_reward - old_reward).item()

        probabilities.append(prob_new_preferred)
        preferred_model = 'new' if prob_new_preferred > 0.5 else 'old'

        # Count preferences
        if preferred_model == 'new':
            new_preferred_count += 1
        else:
            old_preferred_count += 1

        # Log results
        bt_result = {
            'prompt': old['prompt'],
            'old_output': old['output'],
            'new_output': new['output'],
            'old_reward': old['reward'],
            'new_reward': new['reward'],
            'preferred': preferred_model,
            'prob_new_preferred': prob_new_preferred
        }
        results.append(bt_result)

    # Calculate metrics
    total_examples = len(old_rewards)
    metrics = {
        'total_examples': total_examples,
        'new_preferred_percentage': 100 * new_preferred_count / total_examples,
        'old_preferred_percentage': 100 * old_preferred_count / total_examples,
        'avg_probability_new_preferred': sum(probabilities) / total_examples
    }

    return results, metrics


def save_results(results, output_path):
    """
    Save the comparison results to a JSON file.

    Args:
        results (list): List of comparison results.
        output_path (str): Path to the output JSON file.
    """
    with open(output_path, "w") as f:
        json.dump(results, f, indent=4)
    print(f"Results saved to {output_path}")


def print_metrics(metrics):
    """
    Print evaluation metrics.

    Args:
        metrics (dict): Dictionary containing evaluation metrics.
    """
    print("\nEVALUATION METRICS:")
    print(f"Total examples: {metrics['total_examples']}")
    print(f"Percentage preferred - KTO model: {metrics['new_preferred_percentage']:.2f}%")
    print(f"Percentage preferred - SFT model: {metrics['old_preferred_percentage']:.2f}%")
    print(f"Average probability of KTO model being preferred: {metrics['avg_probability_new_preferred']:.4f}")


####################################
# MAIN SCRIPT
####################################

def main():
    args = ScriptArguments()

    print("Loading data...")
    old_rewards = load_rewards(args.sft_generations_file)
    new_rewards = load_rewards(args.kto_generations_file)

    # Perform Bradley-Terry comparison
    print("Performing Bradley-Terry comparison...")
    results, metrics = bradley_terry_comparison(old_rewards, new_rewards)

    save_results(results, args.output_file)
    print_metrics(metrics)


if __name__ == "__main__":
    main()