import torch import torch.nn as nn import torch.nn.functional as F def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: try: nn.init.xavier_uniform_(m.weight.data) m.bias.data.fill_(0) except AttributeError: print("Skipping initialization of ", classname) class GatedActivation(nn.Module): def __init__(self): super().__init__() def forward(self, x): x, y = x.chunk(2, dim=1) return F.tanh(x) * F.sigmoid(y) class GatedMaskedConv1d(nn.Module): def __init__(self, mask_type, dim, kernel, residual, n_classes=10): super().__init__() assert kernel % 2 == 1, print("Kernel size must be odd") self.mask_type = mask_type self.residual = residual self.class_cond_embedding = nn.Embedding( n_classes, 2 * dim ) kernel_shp = (kernel // 2 + 1) # (ceil(n/2), n) padding_shp = (kernel // 2) self.vert_stack = nn.Conv1d( dim, dim * 2, kernel_shp, 1, padding_shp ) self.gate = GatedActivation() if self.residual: self.res = nn.Conv1d(dim, dim, 1) def make_causal(self): self.vert_stack.weight.data[:, :, -1].zero_() # Mask final row def forward(self, x, h): if self.mask_type == 'A': self.make_causal() h = self.class_cond_embedding(h) h_vert = self.vert_stack(x) h_vert = h_vert[:, :, :x.size(-2), :] out = self.gate(h_vert + h[:, :, None, None]) if self.residual: out = self.res(out) + x return out class GatedPixelCNN(nn.Module): def __init__(self, input_dim=256, dim=64, n_layers=15, n_classes=10): super().__init__() self.dim = dim self.embedding_aud_mo = nn.Conv1d(512, dim, 1, 1, padding=0) self.fusion = nn.Conv1d(dim * 2, dim, 1, 1, padding=0) # Create embedding layer to embed input self.embedding = nn.Embedding(input_dim, dim) # Building the PixelCNN layer by layer self.layers = nn.ModuleList() # Initial block with Mask-A convolution # Rest with Mask-B convolutions for i in range(n_layers): mask_type = 'A' if i == 0 else 'B' kernel = 7 if i == 0 else 3 residual = False if i == 0 else True self.layers.append( GatedMaskedConv1d(mask_type, dim, kernel, residual, n_classes) ) # Add the output layer self.output_conv = nn.Sequential( nn.Conv1d(dim, 512, 1), nn.ReLU(True), nn.Conv1d(512, input_dim, 1) ) self.apply(weights_init) self.dp = nn.Dropout(0.1) def forward(self, x, label, c): x = x # (B, C, W) for i, layer in enumerate(self.layers): if i == 1: c = self.embedding(c) x = self.fusion(torch.cat([x, c], dim=1)) x = layer(x, label) return self.output_conv(x) def generate(self, label, shape=(8, 8), batch_size=64, aud_feat=None, pre_latents=None, pre_audio=None): param = next(self.parameters()) x = torch.zeros( (batch_size, *shape), dtype=torch.int64, device=param.device ) if pre_latents is not None: x = torch.cat([pre_latents, x], dim=1) aud_feat = torch.cat([pre_audio, aud_feat], dim=2) h0 = pre_latents.shape[1] h = h0 + shape[0] else: h0 = 0 h = shape[0] for i in range(h0, h): for j in range(shape[1]): if self.audio: logits = self.forward(x, label, aud_feat) else: logits = self.forward(x, label) probs = F.softmax(logits[:, :, i, j], -1) x.data[:, i, j].copy_( probs.multinomial(1).squeeze().data ) return x[:, h0:h]