Spaces:
Running
Running
import os | |
import pydicom | |
import numpy as np | |
import cv2 | |
from matplotlib import pyplot as plt | |
import random | |
import time | |
import tqdm | |
from IPython.core.display import display, HTML | |
# Determine if we are in a Jupyter notebook | |
try: | |
shell = get_ipython().__class__.__name__ | |
if shell == 'ZMQInteractiveShell': | |
# We are in Jupyter, use tqdm.notebook | |
from tqdm.notebook import tqdm | |
else: | |
raise Exception() | |
except: | |
# We are in a terminal, use standard tqdm | |
from tqdm import tqdm | |
FACE_MAX_VALUE = 50 | |
FACE_MIN_VALUE = -125 | |
AIR_THRESHOLD = -800 | |
KERNEL_SIZE = 35 | |
def is_dicom(file_path): | |
try: | |
pydicom.dcmread(file_path) | |
return True | |
except Exception: | |
return False | |
def get_first_directory(path): | |
# Normalize the path to always use Unix-style path separators | |
normalized_path = path.replace("\\", "/") | |
split_path = normalized_path.split("/")[-1] | |
return split_path # Return None if no directories are found | |
def list_dicom_directories(root_dir): | |
dicom_dirs = set() | |
for root, dirs, files in os.walk(root_dir): | |
for file in files: | |
file_path = os.path.join(root, file) | |
if is_dicom(file_path): | |
dicom_dirs.add(root) | |
break | |
return list(dicom_dirs) | |
def load_scan(path): | |
slices = [pydicom.read_file(path + '/' + s) for s in os.listdir(path)] | |
slices.sort(key = lambda x: float(x.ImagePositionPatient[2])) | |
try: | |
slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2]) | |
except: | |
slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation) | |
for s in slices: | |
s.SliceThickness = slice_thickness | |
return slices | |
def get_pixels_hu(slices): | |
image = np.stack([s.pixel_array for s in slices]) | |
# Convert to int16 (from sometimes int16), | |
# should be possible as values should always be low enough (<32k) | |
image = image.astype(np.int16) | |
# Set outside-of-scan pixels to 0 | |
# The intercept is usually -1024, so air is approximately 0 | |
image[image == -2000] = 0 | |
# Convert to Hounsfield units (HU) | |
for slice_number in range(len(slices)): | |
intercept = slices[slice_number].RescaleIntercept | |
slope = slices[slice_number].RescaleSlope | |
if slope != 1: | |
image[slice_number] = slope * image[slice_number].astype(np.float64) | |
image[slice_number] = image[slice_number].astype(np.int16) | |
image[slice_number] += np.int16(intercept) | |
return np.array(image, dtype=np.int16) | |
def binarize_volume(volume, air_hu=AIR_THRESHOLD): | |
binary_volume = np.zeros_like(volume, dtype=np.uint8) | |
binary_volume[volume <= air_hu] = 1 | |
return binary_volume | |
def largest_connected_component(binary_image): | |
# Find all connected components and stats | |
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image, connectivity=8) | |
# Get the index of the largest component, ignoring the background | |
# The background is considered as a component by connectedComponentsWithStats and it is usually the first component | |
largest_component_index = np.argmax(stats[1:, cv2.CC_STAT_AREA]) + 1 | |
# Create an image to keep largest component only | |
largest_component_image = np.zeros(labels.shape, dtype=np.uint8) | |
largest_component_image[labels == largest_component_index] = 1 | |
return largest_component_image | |
def get_largest_component_volume(volume): | |
# Initialize an empty array to hold the processed volume | |
processed_volume = np.empty_like(volume, dtype=np.uint8) | |
# Iterate over each slice in the volume | |
for i in range(volume.shape[0]): | |
# Process the slice and store it in the processed volume | |
processed_volume[i] = largest_connected_component(volume[i]) | |
return processed_volume | |
def dilate_volume(volume, kernel_size=KERNEL_SIZE): | |
# Create the structuring element (kernel) for dilation | |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)) | |
# Initialize an empty array to hold the dilated volume | |
dilated_volume = np.empty_like(volume) | |
# Iterate over each slice in the volume | |
for i in range(volume.shape[0]): | |
# Dilate the slice and store it in the dilated volume | |
dilated_volume[i] = cv2.dilate(volume[i].astype(np.uint8), kernel) | |
return dilated_volume | |
def apply_mask_and_get_values(image_volume, mask_volume): | |
# Apply the mask by multiplying the image volume with the mask volume | |
masked_volume = image_volume * mask_volume | |
# Get all unique values in the masked volume, excluding zero | |
unique_values = np.unique(masked_volume) | |
unique_values = unique_values[unique_values > FACE_MIN_VALUE] | |
unique_values = unique_values[unique_values < FACE_MAX_VALUE] | |
# Convert numpy array to a list | |
unique_values_list = unique_values.tolist() | |
return unique_values_list | |
def apply_random_values_optimized(pixels_hu, dilated_volume, unique_values_list): | |
# Initialize new volume as a copy of the original volume | |
new_volume = np.copy(pixels_hu) | |
# Generate random indices | |
random_indices = np.random.choice(len(unique_values_list), size=np.sum(dilated_volume)) | |
# Select random values from the unique_values_list | |
random_values = np.array(unique_values_list)[random_indices] | |
# Apply the random values to the locations where dilated_volume equals 1 | |
new_volume[dilated_volume == 1] = random_values | |
return new_volume | |
def save_new_dicom_files(new_volume, original_dir, out_path, app="_d"): | |
# Create a new directory path by appending "_d" to the original directory | |
if out_path is None: | |
new_dir = original_dir + app | |
else: | |
new_dir = out_path | |
# Create the new directory if it doesn't exist | |
if not os.path.exists(new_dir): | |
os.makedirs(new_dir) | |
# List all DICOM files in the original directory | |
dicom_files = [os.path.join(original_dir, f) for f in os.listdir(original_dir) if f.endswith('.dcm')] | |
# Sort the dicom_files list by SliceLocation | |
dicom_files.sort(key=lambda x: pydicom.dcmread(x).SliceLocation) | |
# Loop over each slice of the new volume | |
for i in range(new_volume.shape[0]): | |
# Get the corresponding original DICOM file | |
dicom_file = dicom_files[i] | |
# Read the file | |
ds = pydicom.dcmread(dicom_file) | |
ds.decompress() | |
# Revert the slope and intercept operation on the slice | |
new_slice = (new_volume[i] - ds.RescaleIntercept) / ds.RescaleSlope | |
# Update the pixel data with the data from the new slice | |
ds.PixelData = new_slice.astype(np.int16).tobytes() | |
# Generate new file name | |
new_file_name = os.path.join(new_dir, f"new_image_{i}.dcm") | |
# Save the new DICOM file | |
ds.save_as(new_file_name) | |
def drown_volume(in_path, out_path='deid_ct', replacer='face'): | |
""" | |
Processes DICOM files from the provided directory by binarizing, getting the largest connected component, | |
dilating and applying mask. Then applies random values to the dilated volume based on a unique values list | |
obtained from the masked volume (or air value). The results are saved as new DICOM files in a specified directory. | |
Parameters: | |
in_path (str): The path to the directory containing the input DICOM files. | |
out_path (str, optional): The path to the directory where the output DICOM files will be saved. | |
If not provided, the output files will be saved in the input directory appended by "_d". | |
replacer (str, optional): Indicates what kind of pixels are going to be replaced. Default is 'face'. | |
'face': replaces air and face with random values that are found in the skin and subcutaneous fat. | |
'air': replaces air and face with -1000 HU. | |
int: replaces air and face with int HU. | |
Returns: | |
None. The function saves new DICOM files and prints the total elapsed time of the operation. | |
""" | |
start_time = time.time() | |
dirs = list_dicom_directories(in_path) | |
for _d in tqdm(dirs, desc="List of studies"): | |
with tqdm(total=8, desc="Processing DICOM Files", leave=False) as pbar: | |
# Load the DICOM files | |
slices = load_scan(_d) | |
pbar.update() | |
# Get the pixel values and convert them to Hounsfield Units (HU) | |
pixels_hu = get_pixels_hu(slices) | |
pbar.update() | |
# Apply the binarization function on the HU volume | |
binarized_volume = binarize_volume(pixels_hu) | |
pbar.update() | |
# Get the largest connected component from the binarized volume | |
processed_volume = get_largest_component_volume(binarized_volume) | |
pbar.update() | |
# Dilate the processed volume | |
dilated_volume = dilate_volume(processed_volume) | |
pbar.update() | |
if replacer == 'face': | |
# Apply the mask to the original volume and get unique values list | |
unique_values_list = apply_mask_and_get_values(pixels_hu, dilated_volume - processed_volume) | |
elif replacer == 'air': | |
unique_values_list = [0] | |
else: | |
try: | |
replacer = int(replacer) | |
unique_values_list = [replacer] | |
except: | |
print('replacer must be either air, face, or an integer number in Hounsfield units, but ' + str(replacer) + ' was provided.') | |
print('replacing with face') | |
unique_values_list = apply_mask_and_get_values(pixels_hu, dilated_volume - processed_volume) | |
pbar.update() | |
# Apply random values to the dilated volume based on the unique values list | |
new_volume = apply_random_values_optimized(pixels_hu, dilated_volume, unique_values_list) | |
pbar.update() | |
# Save the new DICOM files | |
out_path_n = out_path + "/" + get_first_directory(_d) | |
save_new_dicom_files(new_volume, _d, out_path_n) | |
pbar.update() | |
elapsed_time = time.time() - start_time | |
print(f"Total elapsed time: {elapsed_time} seconds") | |