felipekitamura commited on
Commit
2167878
·
1 Parent(s): 278eb6f

Upload face_deid_ct.py

Browse files
Files changed (1) hide show
  1. face_deid_ct.py +267 -0
face_deid_ct.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pydicom
3
+ import numpy as np
4
+ import cv2
5
+ from matplotlib import pyplot as plt
6
+ import random
7
+ from tqdm import tqdm
8
+ import time
9
+
10
+ FACE_MAX_VALUE = 50
11
+ FACE_MIN_VALUE = -125
12
+
13
+ AIR_THRESHOLD = -800
14
+ KERNEL_SIZE = 35
15
+
16
+
17
+
18
+ def is_dicom(file_path):
19
+ try:
20
+ pydicom.dcmread(file_path)
21
+ return True
22
+ except Exception:
23
+ return False
24
+
25
+ def get_first_directory(path):
26
+ # Normalize the path to always use Unix-style path separators
27
+ normalized_path = path.replace("\\", "/")
28
+ split_path = normalized_path.split("/")[-1]
29
+
30
+ return split_path # Return None if no directories are found
31
+
32
+ def list_dicom_directories(root_dir):
33
+ dicom_dirs = set()
34
+
35
+ for root, dirs, files in os.walk(root_dir):
36
+ for file in files:
37
+ file_path = os.path.join(root, file)
38
+ if is_dicom(file_path):
39
+ dicom_dirs.add(root)
40
+ break
41
+
42
+ return list(dicom_dirs)
43
+
44
+ def load_scan(path):
45
+ slices = [pydicom.read_file(path + '/' + s) for s in os.listdir(path)]
46
+ slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))
47
+ try:
48
+ slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
49
+ except:
50
+ slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)
51
+
52
+ for s in slices:
53
+ s.SliceThickness = slice_thickness
54
+
55
+ return slices
56
+
57
+ def get_pixels_hu(slices):
58
+ image = np.stack([s.pixel_array for s in slices])
59
+ # Convert to int16 (from sometimes int16),
60
+ # should be possible as values should always be low enough (<32k)
61
+ image = image.astype(np.int16)
62
+
63
+ # Set outside-of-scan pixels to 0
64
+ # The intercept is usually -1024, so air is approximately 0
65
+ image[image == -2000] = 0
66
+
67
+ # Convert to Hounsfield units (HU)
68
+ for slice_number in range(len(slices)):
69
+
70
+ intercept = slices[slice_number].RescaleIntercept
71
+ slope = slices[slice_number].RescaleSlope
72
+
73
+ if slope != 1:
74
+ image[slice_number] = slope * image[slice_number].astype(np.float64)
75
+ image[slice_number] = image[slice_number].astype(np.int16)
76
+
77
+ image[slice_number] += np.int16(intercept)
78
+
79
+ return np.array(image, dtype=np.int16)
80
+
81
+ def binarize_volume(volume, air_hu=AIR_THRESHOLD):
82
+ binary_volume = np.zeros_like(volume, dtype=np.uint8)
83
+ binary_volume[volume <= air_hu] = 1
84
+ return binary_volume
85
+
86
+ def largest_connected_component(binary_image):
87
+ # Find all connected components and stats
88
+ num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image, connectivity=8)
89
+
90
+ # Get the index of the largest component, ignoring the background
91
+ # The background is considered as a component by connectedComponentsWithStats and it is usually the first component
92
+ largest_component_index = np.argmax(stats[1:, cv2.CC_STAT_AREA]) + 1
93
+
94
+ # Create an image to keep largest component only
95
+ largest_component_image = np.zeros(labels.shape, dtype=np.uint8)
96
+ largest_component_image[labels == largest_component_index] = 1
97
+
98
+ return largest_component_image
99
+
100
+ def get_largest_component_volume(volume):
101
+ # Initialize an empty array to hold the processed volume
102
+ processed_volume = np.empty_like(volume, dtype=np.uint8)
103
+
104
+ # Iterate over each slice in the volume
105
+ for i in range(volume.shape[0]):
106
+ # Process the slice and store it in the processed volume
107
+ processed_volume[i] = largest_connected_component(volume[i])
108
+
109
+ return processed_volume
110
+
111
+
112
+
113
+ def dilate_volume(volume, kernel_size=KERNEL_SIZE):
114
+ # Create the structuring element (kernel) for dilation
115
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
116
+
117
+ # Initialize an empty array to hold the dilated volume
118
+ dilated_volume = np.empty_like(volume)
119
+
120
+ # Iterate over each slice in the volume
121
+ for i in range(volume.shape[0]):
122
+ # Dilate the slice and store it in the dilated volume
123
+ dilated_volume[i] = cv2.dilate(volume[i].astype(np.uint8), kernel)
124
+
125
+ return dilated_volume
126
+
127
+
128
+ def apply_mask_and_get_values(image_volume, mask_volume):
129
+ # Apply the mask by multiplying the image volume with the mask volume
130
+ masked_volume = image_volume * mask_volume
131
+
132
+ # Get all unique values in the masked volume, excluding zero
133
+ unique_values = np.unique(masked_volume)
134
+ unique_values = unique_values[unique_values > FACE_MIN_VALUE]
135
+ unique_values = unique_values[unique_values < FACE_MAX_VALUE]
136
+
137
+ # Convert numpy array to a list
138
+ unique_values_list = unique_values.tolist()
139
+
140
+ return unique_values_list
141
+
142
+
143
+ def apply_random_values_optimized(pixels_hu, dilated_volume, unique_values_list):
144
+ # Initialize new volume as a copy of the original volume
145
+ new_volume = np.copy(pixels_hu)
146
+
147
+ # Generate random indices
148
+ random_indices = np.random.choice(len(unique_values_list), size=np.sum(dilated_volume))
149
+
150
+ # Select random values from the unique_values_list
151
+ random_values = np.array(unique_values_list)[random_indices]
152
+
153
+ # Apply the random values to the locations where dilated_volume equals 1
154
+ new_volume[dilated_volume == 1] = random_values
155
+
156
+ return new_volume
157
+
158
+ def save_new_dicom_files(new_volume, original_dir, out_path, app="_d"):
159
+ # Create a new directory path by appending "_d" to the original directory
160
+ if out_path is None:
161
+ new_dir = original_dir + app
162
+ else:
163
+ new_dir = out_path
164
+
165
+ # Create the new directory if it doesn't exist
166
+ if not os.path.exists(new_dir):
167
+ os.makedirs(new_dir)
168
+
169
+ # List all DICOM files in the original directory
170
+ dicom_files = [os.path.join(original_dir, f) for f in os.listdir(original_dir) if f.endswith('.dcm')]
171
+
172
+ # Sort the dicom_files list by SliceLocation
173
+ dicom_files.sort(key=lambda x: pydicom.dcmread(x).SliceLocation)
174
+
175
+ # Loop over each slice of the new volume
176
+ for i in range(new_volume.shape[0]):
177
+ # Get the corresponding original DICOM file
178
+ dicom_file = dicom_files[i]
179
+
180
+ # Read the file
181
+ ds = pydicom.dcmread(dicom_file)
182
+
183
+ # Revert the slope and intercept operation on the slice
184
+ new_slice = (new_volume[i] - ds.RescaleIntercept) / ds.RescaleSlope
185
+
186
+ # Update the pixel data with the data from the new slice
187
+ ds.PixelData = new_slice.astype(np.int16).tobytes()
188
+
189
+ # Generate new file name
190
+ new_file_name = os.path.join(new_dir, f"new_image_{i}.dcm")
191
+
192
+ # Save the new DICOM file
193
+ ds.save_as(new_file_name)
194
+
195
+
196
+
197
+ def drown_volume(in_path, out_path='deid_ct', replacer='face'):
198
+ """
199
+ Processes DICOM files from the provided directory by binarizing, getting the largest connected component,
200
+ dilating and applying mask. Then applies random values to the dilated volume based on a unique values list
201
+ obtained from the masked volume (or air value). The results are saved as new DICOM files in a specified directory.
202
+
203
+ Parameters:
204
+ in_path (str): The path to the directory containing the input DICOM files.
205
+ out_path (str, optional): The path to the directory where the output DICOM files will be saved.
206
+ If not provided, the output files will be saved in the input directory appended by "_d".
207
+ replacer (str, optional): Indicates what kind of pixels are going to be replaced. Default is 'face'.
208
+ 'face': replaces air and face with random values that are found in the skin and subcutaneous fat.
209
+ 'air': replaces air and face with -1000 HU.
210
+ int: replaces air and face with int HU.
211
+
212
+ Returns:
213
+ None. The function saves new DICOM files and prints the total elapsed time of the operation.
214
+ """
215
+ start_time = time.time()
216
+
217
+ dirs = list_dicom_directories(in_path)
218
+
219
+ for _d in tqdm(dirs):
220
+
221
+ with tqdm(total=8, desc="Processing DICOM Files", ncols=80) as pbar:
222
+ # Load the DICOM files
223
+ slices = load_scan(_d)
224
+ pbar.update()
225
+
226
+ # Get the pixel values and convert them to Hounsfield Units (HU)
227
+ pixels_hu = get_pixels_hu(slices)
228
+ pbar.update()
229
+
230
+ # Apply the binarization function on the HU volume
231
+ binarized_volume = binarize_volume(pixels_hu)
232
+ pbar.update()
233
+
234
+ # Get the largest connected component from the binarized volume
235
+ processed_volume = get_largest_component_volume(binarized_volume)
236
+ pbar.update()
237
+
238
+ # Dilate the processed volume
239
+ dilated_volume = dilate_volume(processed_volume)
240
+ pbar.update()
241
+ if replacer == 'face':
242
+ # Apply the mask to the original volume and get unique values list
243
+ unique_values_list = apply_mask_and_get_values(pixels_hu, dilated_volume - processed_volume)
244
+ elif replacer == 'air':
245
+ unique_values_list = [0]
246
+ else:
247
+ try:
248
+ replacer = int(replacer)
249
+ unique_values_list = [replacer]
250
+ except:
251
+ print('replacer must be either air, face, or an integer number in Hounsfield units, but ' + str(replacer) + ' was provided.')
252
+ print('replacing with face')
253
+ unique_values_list = apply_mask_and_get_values(pixels_hu, dilated_volume - processed_volume)
254
+
255
+ pbar.update()
256
+
257
+ # Apply random values to the dilated volume based on the unique values list
258
+ new_volume = apply_random_values_optimized(pixels_hu, dilated_volume, unique_values_list)
259
+ pbar.update()
260
+
261
+ # Save the new DICOM files
262
+ out_path_n = out_path + "/" + get_first_directory(_d)
263
+ save_new_dicom_files(new_volume, _d, out_path_n)
264
+ pbar.update()
265
+
266
+ elapsed_time = time.time() - start_time
267
+ print(f"Total elapsed time for 1 study: {elapsed_time} seconds")