Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,12 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
import shutil
|
5 |
-
from omnibin import generate_binary_classification_report
|
6 |
|
7 |
# Define results directory
|
8 |
RESULTS_DIR = "/tmp/results"
|
9 |
|
10 |
-
def process_csv(csv_file, n_bootstrap=1000, dpi=72,
|
11 |
# Read the CSV file
|
12 |
df = pd.read_csv(csv_file.name)
|
13 |
|
@@ -31,7 +31,7 @@ def process_csv(csv_file, n_bootstrap=1000, dpi=72, color="blue"):
|
|
31 |
n_bootstrap=n_bootstrap,
|
32 |
random_seed=42,
|
33 |
dpi=dpi,
|
34 |
-
|
35 |
)
|
36 |
|
37 |
# Get paths to individual plots
|
@@ -55,7 +55,7 @@ iface = gr.Interface(
|
|
55 |
gr.File(label="Upload CSV file with 'y_true' and 'y_pred' columns"),
|
56 |
gr.Number(label="Number of Bootstrap Iterations", value=1000, minimum=100, maximum=10000),
|
57 |
gr.Number(label="DPI", value=72, minimum=50, maximum=300),
|
58 |
-
gr.Dropdown(label="Color", choices=["
|
59 |
],
|
60 |
outputs=[
|
61 |
gr.File(label="Classification Report PDF"),
|
@@ -70,7 +70,7 @@ iface = gr.Interface(
|
|
70 |
description="Upload a CSV file containing 'y_true' and 'y_pred' columns to generate a binary classification report."
|
71 |
"'y_true': reference standard (0s or 1s)."
|
72 |
"'y_pred': model prediction (continuous value between 0 and 1)",
|
73 |
-
examples=["scores.csv"],
|
74 |
cache_examples=False
|
75 |
)
|
76 |
|
|
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
import shutil
|
5 |
+
from omnibin import generate_binary_classification_report, ColorScheme
|
6 |
|
7 |
# Define results directory
|
8 |
RESULTS_DIR = "/tmp/results"
|
9 |
|
10 |
+
def process_csv(csv_file, n_bootstrap=1000, dpi=72, color_scheme=ColorScheme.DEFAULT):
|
11 |
# Read the CSV file
|
12 |
df = pd.read_csv(csv_file.name)
|
13 |
|
|
|
31 |
n_bootstrap=n_bootstrap,
|
32 |
random_seed=42,
|
33 |
dpi=dpi,
|
34 |
+
color_scheme=color_scheme
|
35 |
)
|
36 |
|
37 |
# Get paths to individual plots
|
|
|
55 |
gr.File(label="Upload CSV file with 'y_true' and 'y_pred' columns"),
|
56 |
gr.Number(label="Number of Bootstrap Iterations", value=1000, minimum=100, maximum=10000),
|
57 |
gr.Number(label="DPI", value=72, minimum=50, maximum=300),
|
58 |
+
gr.Dropdown(label="Color Scheme", choices=["DEFAULT", "MONOCHROME", "VIBRANT"], value="DEFAULT")
|
59 |
],
|
60 |
outputs=[
|
61 |
gr.File(label="Classification Report PDF"),
|
|
|
70 |
description="Upload a CSV file containing 'y_true' and 'y_pred' columns to generate a binary classification report."
|
71 |
"'y_true': reference standard (0s or 1s)."
|
72 |
"'y_pred': model prediction (continuous value between 0 and 1)",
|
73 |
+
examples=["scores.csv", 1000, 72, "DEFAULT"],
|
74 |
cache_examples=False
|
75 |
)
|
76 |
|