Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -1,99 +1,14 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
## Usage
|
16 |
-
|
17 |
-
```python
|
18 |
-
import pandas as pd
|
19 |
-
from omnibin import generate_binary_classification_report, ColorScheme
|
20 |
-
|
21 |
-
# Load your data
|
22 |
-
data = pd.read_csv("data/scores.csv")
|
23 |
-
y_true = data['y_true'].values
|
24 |
-
y_scores = data['y_pred'].values
|
25 |
-
|
26 |
-
# Generate comprehensive classification report
|
27 |
-
report_path = generate_binary_classification_report(
|
28 |
-
y_true=y_true, # Array of true binary labels (0 or 1)
|
29 |
-
y_scores=y_scores, # Array of predicted probabilities or scores
|
30 |
-
output_path="classification_report.pdf", # Path to save the PDF report
|
31 |
-
n_bootstrap=1000, # Number of bootstrap iterations for confidence intervals
|
32 |
-
random_seed=42, # Random seed for reproducibility
|
33 |
-
dpi=300, # DPI for plot resolution
|
34 |
-
color_scheme=ColorScheme.DEFAULT # Color scheme for plots (DEFAULT, MONOCHROME, or VIBRANT)
|
35 |
-
)
|
36 |
-
```
|
37 |
-
|
38 |
-
## Input Format
|
39 |
-
|
40 |
-
The input data should be provided as:
|
41 |
-
- `y_true`: Array of true binary labels (0 or 1)
|
42 |
-
- `y_pred`: Array of predicted probabilities or scores
|
43 |
-
|
44 |
-
## Features
|
45 |
-
|
46 |
-
- Generates a comprehensive PDF report with:
|
47 |
-
- ROC curve with confidence bands
|
48 |
-
- Precision-Recall curve with confidence bands
|
49 |
-
- Metrics vs. threshold plots
|
50 |
-
- Confusion matrix at optimal threshold
|
51 |
-
- Calibration plot
|
52 |
-
- Summary table with confidence intervals
|
53 |
-
- Calculates optimal threshold using Youden's J statistic
|
54 |
-
- Provides confidence intervals using bootstrapping
|
55 |
-
- Supports both probability and score-based predictions
|
56 |
-
|
57 |
-
## Metrics Included
|
58 |
-
|
59 |
-
- Accuracy
|
60 |
-
- Sensitivity (Recall)
|
61 |
-
- Specificity
|
62 |
-
- Positive Predictive Value (Precision)
|
63 |
-
- Matthews Correlation Coefficient
|
64 |
-
- F1 Score
|
65 |
-
- AUC-ROC
|
66 |
-
- AUC-PR
|
67 |
-
|
68 |
-
All metrics include 95% confidence intervals calculated through bootstrapping.
|
69 |
-
|
70 |
-
## Output
|
71 |
-
|
72 |
-
The package generates a PDF report containing:
|
73 |
-
1. ROC and Precision-Recall curves with confidence bands
|
74 |
-
2. Metrics plotted across different thresholds
|
75 |
-
3. Confusion matrix at the optimal threshold
|
76 |
-
4. Calibration plot
|
77 |
-
5. Summary table with all metrics and their confidence intervals
|
78 |
-
|
79 |
-
## Example
|
80 |
-
|
81 |
-
Here are examples of the visualizations generated by Omnibin:
|
82 |
-
|
83 |
-
### ROC and Precision-Recall Curves
|
84 |
-

|
85 |
-
|
86 |
-
### Metrics vs Threshold
|
87 |
-
<img src="results/plots/metrics_threshold.png">
|
88 |
-
|
89 |
-
### Confusion Matrix
|
90 |
-
<img src="results/plots/confusion_matrix.png">
|
91 |
-
|
92 |
-
### Calibration Plot
|
93 |
-
<img src="results/plots/calibration.png">
|
94 |
-
|
95 |
-
### Prediction Distribution
|
96 |
-
<img src="results/plots/prediction_distribution.png">
|
97 |
-
|
98 |
-
### Metrics Summary
|
99 |
-

|
|
|
1 |
+
---
|
2 |
+
title: Omnibin
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.29.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
short_description: A Python package for generating comprehensive binary classif
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|