Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from omnibin import generate_binary_classification_report
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
def process_csv(csv_file):
|
8 |
+
# Read the CSV file
|
9 |
+
df = pd.read_csv(csv_file.name)
|
10 |
+
|
11 |
+
# Check if required columns exist
|
12 |
+
required_columns = ['y_true', 'y_pred']
|
13 |
+
if not all(col in df.columns for col in required_columns):
|
14 |
+
raise ValueError("CSV file must contain 'y_true' and 'y_pred' columns")
|
15 |
+
|
16 |
+
# Create a temporary directory for the output
|
17 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
18 |
+
# Generate the report
|
19 |
+
report_path = generate_binary_classification_report(
|
20 |
+
y_true=df['y_true'].values,
|
21 |
+
y_scores=df['y_pred'].values,
|
22 |
+
output_path=os.path.join(temp_dir, "classification_report.pdf"),
|
23 |
+
n_bootstrap=1000,
|
24 |
+
random_seed=42,
|
25 |
+
dpi=72
|
26 |
+
)
|
27 |
+
|
28 |
+
# Return the PDF file
|
29 |
+
return report_path
|
30 |
+
|
31 |
+
# Create the Gradio interface
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=process_csv,
|
34 |
+
inputs=gr.File(label="Upload CSV file with 'y_true' and 'y_pred' columns"),
|
35 |
+
outputs=gr.File(label="Classification Report PDF"),
|
36 |
+
title="Binary Classification Report Generator",
|
37 |
+
description="Upload a CSV file containing 'y_true' and 'y_pred' columns to generate a comprehensive classification report with 6 figures.",
|
38 |
+
examples=[],
|
39 |
+
cache_examples=False
|
40 |
+
)
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
iface.launch()
|