word_embeddings / app_scatter.py
felipekitamura's picture
Rename app.py to app_scatter.py
5dcc9ef verified
import gensim.downloader
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
model = gensim.downloader.load("glove-wiki-gigaword-50")
# Function to reduce dimensions
def reduce_dimensions(data, method='PCA'):
if method == 'PCA':
model = PCA(n_components=2)
elif method == 'TSNE':
model = TSNE(n_components=2, learning_rate='auto', init='random', perplexity=3)
return model.fit_transform(data)
description = """
### Word Embedding Demo App
Universidade Federal de São Paulo - Escola Paulista de Medicina
The output is Word3 + (Word2 - Word1)
Credits:
* Gensim
* Glove
"""
Word1 = gr.Textbox()
Word2 = gr.Textbox()
Word3 = gr.Textbox()
label = gr.Label(show_label=True, label="Word4")
sp = gr.ScatterPlot(x="x", y="y", color="color", label="label")
def inference(word1, word2, word3):
output = model.similar_by_vector(model[word3] + model[word2] - model[word1])
print(output)
word_list = [word1, word2, word3]
word_list.extend([x for x,y in [item for item in output[:4]]])
words = {key: model[key] for key in word_list}
data = np.concatenate([x[np.newaxis, :] for x in words.values()], axis=0)
print(data.shape)
labels = words.keys()
reduced_data_pca = reduce_dimensions(data, method='PCA')
print(reduced_data_pca.shape)
#'''
df = pd.DataFrame({
"x": reduced_data_pca[:, 0],
"y": reduced_data_pca[:, 1],
"color": [x for x in labels][:len(data)]
#"label": ["W1", "W2", "W3", "W4", "W5", "W6", "W7"][:len(data)]
})
#'''
return df
examples = [
["woman", "man", "aunt"],
["woman", "man", "girl"],
["woman", "man", "granddaughter"],
]
iface = gr.Interface(
fn=inference,
inputs=[Word1, Word2, Word3],
outputs=sp,
description=description,
examples=examples
)
iface.launch()