Spaces:
Sleeping
Sleeping
felipekitamura
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gensim.downloader
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.decomposition import PCA
|
7 |
+
from sklearn.manifold import TSNE
|
8 |
+
model = gensim.downloader.load("glove-wiki-gigaword-50")
|
9 |
+
|
10 |
+
# Function to reduce dimensions
|
11 |
+
def reduce_dimensions(data, method='PCA'):
|
12 |
+
if method == 'PCA':
|
13 |
+
model = PCA(n_components=2)
|
14 |
+
elif method == 'TSNE':
|
15 |
+
model = TSNE(n_components=2, learning_rate='auto', init='random', perplexity=3)
|
16 |
+
return model.fit_transform(data)
|
17 |
+
|
18 |
+
description = """
|
19 |
+
### Word Embedding Demo App
|
20 |
+
Universidade Federal de São Paulo - Escola Paulista de Medicina
|
21 |
+
|
22 |
+
The output is Word3 + (Word2 - Word1)
|
23 |
+
|
24 |
+
Credits:
|
25 |
+
* Gensim
|
26 |
+
* Glove
|
27 |
+
"""
|
28 |
+
|
29 |
+
Word1 = gr.Textbox()
|
30 |
+
Word2 = gr.Textbox()
|
31 |
+
Word3 = gr.Textbox()
|
32 |
+
label = gr.Label(show_label=True, label="Word4")
|
33 |
+
sp = gr.ScatterPlot(x="x", y="y", color="color")
|
34 |
+
|
35 |
+
|
36 |
+
def inference(word1, word2, word3):
|
37 |
+
output = model.similar_by_vector(model[word3] + model[word2] - model[word1])
|
38 |
+
word_list = [word1, word2, word3]
|
39 |
+
word_list.expand([x for x,y in output[:4]])
|
40 |
+
words = {key: model[key] for key in word_list}
|
41 |
+
data = np.concatenate([x[np.newaxis, :] for x in words.values()], axis=0)
|
42 |
+
labels = words.keys()
|
43 |
+
reduced_data_pca = reduce_dimensions(data, method='PCA')
|
44 |
+
df = pd.DataFrame({
|
45 |
+
"x": reduced_data[:, 0],
|
46 |
+
"y": reduced_data[:, 1],
|
47 |
+
"color": ["b", "b", "b", "r", "g", "g", "g"]
|
48 |
+
})
|
49 |
+
|
50 |
+
return df
|
51 |
+
|
52 |
+
examples = [
|
53 |
+
["woman", "man", "aunt"],
|
54 |
+
["woman", "man", "girl"],
|
55 |
+
["woman", "man", "granddaughter"],
|
56 |
+
]
|
57 |
+
|
58 |
+
iface = gr.Interface(
|
59 |
+
fn=inference,
|
60 |
+
inputs=[Word1, Word2, Word3],
|
61 |
+
outputs=sp,
|
62 |
+
description=description,
|
63 |
+
examples=examples
|
64 |
+
)
|
65 |
+
|
66 |
+
iface.launch()
|