inference / app.py
feliperafael's picture
Update app.py
8747bd7 verified
import streamlit as st
from ultralytics import YOLO
import cv2
from PIL import Image
from io import BytesIO
import cairosvg
# Read the SVG logo file
with open("marca-cor-fundo-escuro.svg", "r") as f:
logo_svg = f.read()
# Convert SVG to PNG using cairosvg
logo_png_bytes = cairosvg.svg2png(bytestring=logo_svg.encode())
logo_png = Image.open(BytesIO(logo_png_bytes))
# Display the logo
st.image(logo_png, width=200)
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
# Set up the Streamlit app
#st.title('YOLOv8 Video/Webcam Inference')
# Add file uploader or webcam option
video_file = st.file_uploader("Upload a video", type=["mp4", "avi"])
use_webcam = st.checkbox("Use webcam")
# Placeholder for inference results
inference_placeholder = st.empty()
# Video/webcam inference loop
if video_file is not None or use_webcam:
if video_file is not None:
video = cv2.VideoCapture(video_file.name)
else:
video = cv2.VideoCapture(1) # Use webcam
while True:
ret, frame = video.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Run YOLOv8 inference on the frame
results = model(frame)
# Display the inference results
inference_placeholder.image(results[0].plot(), use_container_width=True)
video.release()
else:
st.warning("Please upload a video file or select the webcam option.")