Spaces:
Sleeping
Sleeping
Commit
·
ea7abd5
1
Parent(s):
fbebe0c
- README.md +45 -12
- app.py +54 -0
- marca-cor-fundo-escuro.svg +49 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,12 +1,45 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv8 Video/Webcam Inference Streamlit App
|
2 |
+
|
3 |
+
This is a Streamlit application that uses YOLOv8 models with Ultralytics for real-time inference on videos or webcam feed.
|
4 |
+
|
5 |
+
## Requirements
|
6 |
+
|
7 |
+
- Python 3.7+
|
8 |
+
- Streamlit
|
9 |
+
- Ultralytics
|
10 |
+
- OpenCV
|
11 |
+
|
12 |
+
## Installation
|
13 |
+
|
14 |
+
1. Clone the repository:
|
15 |
+
|
16 |
+
```
|
17 |
+
git clone https://github.com/your-username/yolov8-streamlit-app.git
|
18 |
+
cd yolov8-streamlit-app
|
19 |
+
```
|
20 |
+
|
21 |
+
2. Install the dependencies:
|
22 |
+
|
23 |
+
```
|
24 |
+
pip install -r requirements.txt
|
25 |
+
```
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
1. Download the YOLOv8 model file (`yolov8n.pt`) and place it in the project directory.
|
30 |
+
|
31 |
+
2. Run the Streamlit app:
|
32 |
+
|
33 |
+
```
|
34 |
+
streamlit run app.py
|
35 |
+
```
|
36 |
+
|
37 |
+
3. Open the app in your web browser using the provided URL.
|
38 |
+
|
39 |
+
4. Upload a video file or select the "Use webcam" option to start the inference.
|
40 |
+
|
41 |
+
5. The app will display the inference results on the video frames or webcam feed in real-time.
|
42 |
+
|
43 |
+
## License
|
44 |
+
|
45 |
+
This project is licensed under the MIT License.
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
import cairosvg
|
7 |
+
|
8 |
+
# Read the SVG logo file
|
9 |
+
with open("marca-cor-fundo-escuro.svg", "r") as f:
|
10 |
+
logo_svg = f.read()
|
11 |
+
|
12 |
+
# Convert SVG to PNG using cairosvg
|
13 |
+
logo_png_bytes = cairosvg.svg2png(bytestring=logo_svg.encode())
|
14 |
+
logo_png = Image.open(BytesIO(logo_png_bytes))
|
15 |
+
|
16 |
+
# Display the logo
|
17 |
+
st.image(logo_png, width=200)
|
18 |
+
|
19 |
+
# Load the YOLOv8 model
|
20 |
+
model = YOLO('yolov8n.pt')
|
21 |
+
|
22 |
+
# Set up the Streamlit app
|
23 |
+
#st.title('YOLOv8 Video/Webcam Inference')
|
24 |
+
|
25 |
+
# Add file uploader or webcam option
|
26 |
+
video_file = st.file_uploader("Upload a video", type=["mp4", "avi"])
|
27 |
+
use_webcam = st.checkbox("Use webcam")
|
28 |
+
|
29 |
+
# Placeholder for inference results
|
30 |
+
inference_placeholder = st.empty()
|
31 |
+
|
32 |
+
# Video/webcam inference loop
|
33 |
+
if video_file is not None or use_webcam:
|
34 |
+
if video_file is not None:
|
35 |
+
video = cv2.VideoCapture(video_file.name)
|
36 |
+
else:
|
37 |
+
video = cv2.VideoCapture(0) # Use webcam
|
38 |
+
|
39 |
+
while True:
|
40 |
+
ret, frame = video.read()
|
41 |
+
if not ret:
|
42 |
+
break
|
43 |
+
|
44 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
45 |
+
|
46 |
+
# Run YOLOv8 inference on the frame
|
47 |
+
results = model(frame)
|
48 |
+
|
49 |
+
# Display the inference results
|
50 |
+
inference_placeholder.image(results[0].plot(), use_container_width=True)
|
51 |
+
|
52 |
+
video.release()
|
53 |
+
else:
|
54 |
+
st.warning("Please upload a video file or select the webcam option.")
|
marca-cor-fundo-escuro.svg
ADDED
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
ultralytics
|
3 |
+
opencv-python
|
4 |
+
pillow
|
5 |
+
cairosvg
|