File size: 11,736 Bytes
8ab8ba4
 
fa6525c
8ab8ba4
 
fa6525c
8ab8ba4
 
 
fa6525c
8ab8ba4
fa6525c
8ab8ba4
 
 
fa6525c
8ab8ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import numpy as np
import gradio as gr
import spaces
import cv2

from typing import Dict
from torchvision.transforms.functional import to_tensor, center_crop, resize
from PIL import Image

from ui_model import fetch_model, process_sketch, process_mask

engage_logo = Image.open("engage_studios_logo.png").resize((700, 88), Image.Resampling.BICUBIC)
engage_logo_mask = np.array(engage_logo.split()[-1])[..., None] / 255
engage_logo_np = np.array(engage_logo.convert('RGB'))

pipe = fetch_model()
pipe.to('cuda')


@spaces.GPU
def run_text_to_image(prompt=None, neg_prompt=None,
                      inference_steps=8, num_images=2,
                      guidance_scale=2.0,
                      guidance_rescale=0.0,

                      height=1024,
                      width=1024,

                      condition_scale=0.5,

                      exposure=0.0,
                      progress=gr.Progress()):
    images = pipe(prompt=prompt,
                  negative_prompt=neg_prompt,
                  num_images_per_prompt=num_images,
                  num_inference_steps=inference_steps,
                  height=height,
                  width=width,
                  guidance_scale=guidance_scale,
                  guidance_rescale=guidance_rescale,
                  controlnet_conditioning_scale=condition_scale,
                  gradio_progress=progress,
                  cross_attention_kwargs={"scale": exposure}
                  ).images
    return images


def run_model(user_state, condition_image, settings, prompt, neg_prompt, inference_steps=8, num_images=2,
              guidance_scale=2.0,
              guidance_rescale=0.0,
              enable_freeu=False,

              height=1024,
              width=1024,

              condition_scale=0.5,
              sketch_detail=1.0,
              sketch_softness=0.5,
              inpaint_strength=0.9,

              exposure=0.0,
              enable_stylation=False,

              style_1_down=0.0,
              style_1_mid=0.0,
              style_1_up=0.0,

              style_2_down=0.0,
              style_2_mid=0.0,
              style_2_up=0.0,

              style_3_down=0.0,
              style_3_mid=0.0,
              style_3_up=0.0,

              style_4_down=0.0,
              style_4_mid=0.0,
              style_4_up=0.0,

              seed=None,
              progress=gr.Progress()):
    # prompt += ", shot with a mirrorless, 35mm, photography, real, 8k, photorealistic, "
    prompt += "best quality, HD, ~*~aesthetic~*~"

    np.random.seed(seed)
    torch.manual_seed(seed)

    progress(0, desc="Thinking...", total=int(inference_steps))

    if enable_freeu:
        pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
    else:
        pipe.disable_freeu()

    if exposure != 0.0 and enable_stylation:
        pipe.enable_lora()
        adapter_weight_scales_ENGAGE = {"unet": {"down": style_1_down, "mid": style_1_mid, "up": style_1_up}}
        adapter_weight_scales_FILM = {"unet": {"down": style_2_down, "mid": style_2_mid, "up": style_2_up}}
        adapter_weight_scales_MJ = {"unet": {"down": style_3_down, "mid": style_3_mid, "up": style_3_up}}
        adapter_weight_scales_MORE_ART = {"unet": {"down": style_4_down, "mid": style_4_mid, "up": style_4_up}}

        pipe.set_adapters(["ENGAGE_LORA", "FILM_LORA", "MJ_LORA", "MORE_ART_LORA"],
                          [adapter_weight_scales_ENGAGE,
                           adapter_weight_scales_FILM,
                           adapter_weight_scales_MJ,
                           adapter_weight_scales_MORE_ART])
    else:
        pipe.set_adapters(["ENGAGE_LORA", "FILM_LORA", "MJ_LORA", "MORE_ART_LORA"],
                          adapter_weights=[0.0, 0.0, 0.0, 0.0])
        pipe.disable_lora()

    images = run_text_to_image(prompt=prompt,
                               neg_prompt=neg_prompt,
                               num_images=num_images,
                               inference_steps=inference_steps,
                               height=height,
                               width=width,
                               guidance_scale=guidance_scale,
                               guidance_rescale=guidance_rescale,
                               condition_scale=condition_scale,
                               progress=progress,
                               exposure=exposure)

    for idx, im in enumerate(images):
        im = np.asarray(im).copy()
        im[-88:, :700] = im[-88:, :700] * (1 - engage_logo_mask) + engage_logo_np
        images[idx] = Image.fromarray(np.clip(im.astype('uint8'), 0, 255))

    user_state["IMAGE_GALLERY"] += images
    return user_state["IMAGE_GALLERY"], user_state


theme = gr.themes.Base(
    primary_hue="neutral",
    radius_size="none",
).set(
    body_text_color_dark='*neutral_800',
    embed_radius='*radius_xxs',
    button_primary_background_fill='*primary_700',
    button_primary_background_fill_hover='*primary_400',
    button_primary_background_fill_hover_dark='*primary_400',
    button_primary_border_color_dark='*primary_200',
    button_primary_text_color='*primary_50',
    button_primary_text_color_dark='*primary_50',
    button_primary_text_color_hover='*primary_50'
)
with gr.Blocks(theme=theme) as engage_automotive_lora_demo:
    session_state = gr.State(value={"IMAGE_GALLERY": [],
                                    "SELECTED_IMAGE": None
                                    })
    diffused_image_out = gr.Gallery(label='Results', show_label=False,
                                    columns=[3], rows=[1], object_fit="contain", height="auto",
                                    format="png")
    with gr.Group():
        with gr.Row():
            prompt_box = gr.Textbox("futuristic dark red car in a white studio",
                                    label='Prompt')
            generate_button = gr.Button("Generate", scale=0)
        with gr.Row():
            settings_dropdown = gr.Dropdown(
                ["Text to image", "From sketch", "Inpaint", "Inpaint sketch"], value="Text to image",
                label="Mode", info="Text to image, prompt only. "
                                   "From sketch, upload an initial image / sketch in the image editor. "
                                   "Inpaint sketch, edits the chosen area of an image. Uses the initial "
                                   "image as base for sketches."
            )
        with gr.Accordion("Image Editor", open=False):
            condition_image = gr.ImageEditor(type='pil', show_label=False,
                                             brush=gr.Brush(colors=["#000000"], color_mode="fixed"))
        with gr.Row():
            with gr.Accordion("Settings", open=False):
                neg_prompt_box = gr.Textbox(
                    "blurry, poor quality, unrealistic",
                    label='Negative Prompt')
                seed_box = gr.Number(42, label='Seed')
                inference_steps = gr.Slider(0, 20, value=8,
                                            label='Inference Steps', step=1)
                num_images = gr.Slider(1, 3, value=2, label='Number of Images', step=1)
                guidance_scale = gr.Slider(0, 10, value=1.5,
                                           label='Guidance Scale', step=0.1)
                guidance_rescale = gr.Slider(0.0, 1.0, value=0.0,
                                             label='Guidance Rescale', step=0.1)
                height = gr.Slider(128, 2048, value=1024, label='Image Height', step=64)
                width = gr.Slider(128, 2048, value=1024, label='Image Width', step=64)
                condition_influence = gr.Slider(0.0, 1.0, value=0.5, label='Condition Influence')
                sketch_detail = gr.Slider(0.0, 1.0, value=0.5, label='Sketch Detail')
                sketch_softness = gr.Slider(0.0, 1.0, value=0.5, label='Sketch Softness')
                inpaint_strength = gr.Slider(0.0, 1.0, value=0.8, label='Inpaint Strength')
                enable_freeu = gr.Checkbox(True, label='FreeU',
                                           info='Enables FreeU scaling factors.')
            with gr.Accordion("Stylation (Experimental)", open=False):
                with gr.Row():
                    exposure = gr.Slider(-1.0, 1.0, value=0.0, label='Exposure')
                    enable_stylation = gr.Checkbox(label='Enable Stylation',
                                                   info='EXPERIMENTAL: We apologize for the ambiguity, '
                                                        'please play around with the sliders to '
                                                        'find a style you like!'
                                                        'Warning: Will slow down the generation time.')
                with gr.Accordion("Style A - Engage Studios Futuristic", open=False):
                    style_A_down = gr.Slider(-1.0, 1.0, value=0.0, label='down')
                    style_A_mid = gr.Slider(-1.0, 1.0, value=0.0, label='mid')
                    style_A_up = gr.Slider(-1.0, 1.0, value=0.0, label='up')
                with gr.Accordion("Style B - Lighting", open=False):
                    style_B_down = gr.Slider(-1.0, 1.0, value=0.0, label='down')
                    style_B_mid = gr.Slider(-1.0, 1.0, value=0.0, label='mid')
                    style_B_up = gr.Slider(-1.0, 1.0, value=0.0, label='up')
                with gr.Accordion("Style C - Details A", open=False):
                    style_C_down = gr.Slider(-1.0, 1.0, value=0.0, label='down')
                    style_C_mid = gr.Slider(-1.0, 1.0, value=0.0, label='mid')
                    style_C_up = gr.Slider(-1.0, 1.0, value=0.0, label='up')
                with gr.Accordion("Style D - Details B", open=False):
                    style_D_down = gr.Slider(-1.0, 1.0, value=0.0, label='down')
                    style_D_mid = gr.Slider(-1.0, 1.0, value=0.0, label='mid')
                    style_D_up = gr.Slider(-1.0, 1.0, value=0.0, label='up')

    generate_button.click(run_model,
                          inputs=[session_state,
                                  condition_image,
                                  settings_dropdown,
                                  prompt_box,
                                  neg_prompt_box,

                                  inference_steps,
                                  num_images,

                                  guidance_scale,
                                  guidance_rescale,
                                  enable_freeu,

                                  height,
                                  width,

                                  condition_influence,

                                  sketch_detail,
                                  sketch_softness,
                                  inpaint_strength,

                                  exposure,
                                  enable_stylation,

                                  style_A_down,
                                  style_A_mid,
                                  style_A_up,

                                  style_B_down,
                                  style_B_mid,
                                  style_B_up,

                                  style_C_down,
                                  style_C_mid,
                                  style_C_up,

                                  style_D_down,
                                  style_D_mid,
                                  style_D_up,

                                  seed_box],
                          outputs=[diffused_image_out, session_state],
                          show_progress=True)

engage_automotive_lora_demo.launch()