felixrosberg commited on
Commit
14f0f75
·
verified ·
1 Parent(s): 57fa270

Delete ui_model.py

Browse files
Files changed (1) hide show
  1. ui_model.py +0 -70
ui_model.py DELETED
@@ -1,70 +0,0 @@
1
- import torch
2
- import cv2
3
- import numpy as np
4
-
5
- from torchvision.transforms.functional import to_tensor, center_crop, resize
6
- from PIL import Image
7
- from EngageEngine.pipeline import EngagePipeline
8
-
9
- from diffusers import (
10
- EulerAncestralDiscreteScheduler,
11
- AutoencoderKL, ControlNetModel,
12
- )
13
-
14
-
15
- def process_sketch(x, im_size=(1024, 1024), sketch_detail=0.5, sketch_softness=0.5):
16
- x_b = Image.new("RGBA", x.size, "WHITE")
17
- x_b.paste(x, mask=x)
18
- x = to_tensor(x_b.convert('RGB')).unsqueeze(0)
19
- x = center_crop(x, x.shape[-1])
20
- x = resize(x, im_size)
21
-
22
- u_th = (1 - sketch_detail) * 190 + 10
23
- l_th = (1 - sketch_detail) ** (sketch_softness * 8 + 1) * 185 + 5
24
-
25
- edges = [cv2.Canny(x[i].mul(255).permute(1, 2, 0).numpy().astype(np.uint8),
26
- u_th, l_th, L2gradient=True) for i in range(len(x))]
27
- edges = torch.stack([torch.tensor(e).div(255).unsqueeze(0) for e in edges], dim=0)
28
- edges = torch.concatenate([edges, edges, edges], dim=1)
29
- return edges
30
-
31
-
32
- def process_mask(x, mask, im_size=(1024, 1024)):
33
- x = to_tensor(x.convert('RGB')).unsqueeze(0)
34
- x = center_crop(x, x.shape[-1])
35
- x = resize(x, im_size)
36
-
37
- mask = to_tensor(mask.convert('L')).unsqueeze(0)
38
- mask = center_crop(mask, mask.shape[-1])
39
- mask = resize(mask, im_size)
40
-
41
- return x, mask
42
-
43
-
44
- def fetch_model():
45
- # Load VAE component
46
- vae = AutoencoderKL.from_pretrained(
47
- "madebyollin/sdxl-vae-fp16-fix",
48
- torch_dtype=torch.float16
49
- )
50
-
51
- controlnet = ControlNetModel.from_pretrained(
52
- "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
53
- )
54
-
55
- # Configure the pipeline
56
- pipe = EngagePipeline.from_pretrained(
57
- "dataautogpt3/ProteusV0.4-Lightning",
58
- vae=vae,
59
- controlnet=controlnet,
60
- torch_dtype=torch.float16
61
- )
62
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
63
- pipe.load_lora_weights("EngageEngine/ENGAGE_LORA.safetensors", adapter_name="ENGAGE_LORA")
64
- pipe.load_lora_weights("EngageEngine/FILM_LORA.safetensors", adapter_name="FILM_LORA")
65
- pipe.load_lora_weights("EngageEngine/MJ_LORA.safetensors", adapter_name="MJ_LORA")
66
- pipe.load_lora_weights("EngageEngine/MORE_ART_LORA.safetensors", adapter_name="MORE_ART_LORA")
67
- pipe.set_adapters(["ENGAGE_LORA", "FILM_LORA", "MJ_LORA", "MORE_ART_LORA"], adapter_weights=[0.0, 0.0, 0.0, 0.0])
68
- pipe.to('cuda')
69
-
70
- return pipe