felixrosberg commited on
Commit
1649ca8
·
1 Parent(s): 7206806

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -223
app.py CHANGED
@@ -12,228 +12,7 @@ token = os.environ['model_fetch']
12
 
13
  anonymizer_repo = Repository(local_dir="anonymizer", clone_from="felixrosberg/anonymizer", use_auth_token=token)
14
 
15
- from anonymizer.face_anonymizer_image_v5_3dmm_obscured_work import *
16
-
17
- description = "Interactive demo of facial anonymization for images. " \
18
- "You can also perform " \
19
- "zero-shot face swapping using the anonymizer. **Note** that this model " \
20
- "display " \
21
- "an interesting behaviour, where it in most cases preserves ethnicity and gender even if source and " \
22
- "target differ in these two attributes. You can also play around with *reconstruction attacks*, an adversarial " \
23
- "model that can revert the anonymization. Furthermore, you can choose to include adversarial defense " \
24
- "noise against the *reconstruction attack* model.\n\n"
25
-
26
- article = "## Options \n " \
27
- "- **Zero-shot face swap**: Performs face swap using the *name pending* anonymizer. \n" \
28
- "- **Reconstruction attack**: After anonymization or face swap, performs a reconstruction attack, " \
29
- "retrieving the original identity. \n " \
30
- "- **Adverarial Defense**: Applies a uniform noise after anonymization or face swap, before a " \
31
- "reconstruction attack, disrupting the reconstruction attack. \n " \
32
- "- **Use anchor**: With this option, we generate anchor identities from precalculated identities. If " \
33
- "this is not used, the original identity could be easily figured out be searching for a match with " \
34
- "-z, where z is an identity embedding in a data base. \n" \
35
- "- **3DMM**: Change to model regularized by a 3D Morphable Model. Better pose performance, slightly worse " \
36
- "identity performance. As of now, reconstruction attack does not work on this model. \n" \
37
- "## Sliders \n " \
38
- "- **Defense Strength**: Controls how much adversarial defense noise to add. \n " \
39
- "- **Margin**: Controls the cosine distance margin allowed when sampling anonymization identities. \n " \
40
- "- **SLERP Factor**: Controls how the anchors are established. Expect variation in the anonymized face " \
41
- "when changing this together with the margin. \n" \
42
- "- **ID Interpolation**: Controls linear interpolation between target and source identity. \n " \
43
- "- **Detection Scale**: Resizes the images with given value before passing the the detector. Useful " \
44
- "for image with smaller faces that the detector struggle to detect. Increases inference time if > 1 " \
45
- "and vice versa. \n" \
46
- "## Outputs \n " \
47
- "- **Output**: Manipulated face(s), anonymization, face swap, reconstruction attack etc. \n " \
48
- "- **Mask**: The predicted mask from the model or the reconstruction attack model. \n" \
49
- "- **Cosine Distances**: The mean cosine distance between anonymized face, target, inverse target, " \
50
- "source and reconstruction. Visualizes the identity difference. If there are several faces present, " \
51
- "this will demonstrate the mean. \n\n" \
52
- "To consider the anonymization a success, we generally want the cosine distance between anonymized and " \
53
- "target, anonymized and inverse target, and target and reconstruction to be > 0.63 (the " \
54
- "threshold for ArcFace for a false acceptance rate of 0.001). \n \n" \
55
- "## Disclaimer: DeepFake Capabilities \n " \
56
- "This model is able to do identity swaps that is able to be exceptionally convincing for state-of-the-art facial " \
57
- "recognition models. However, when changing the identity, the results are perceptually limited. Meaning that in " \
58
- "most cases you are not really to notice the imposed identity. Thus, it is NOT practical for deep faking people in " \
59
- "a malicious manner. To summaries, DeepFake capabilities are poor, anonymization capabilities are strong!"
60
-
61
- theme = gr.themes.Monochrome(
62
- secondary_hue="emerald",
63
- neutral_hue="teal",
64
- ).set(
65
- body_background_fill='*primary_950',
66
- body_background_fill_dark='*secondary_950',
67
- body_text_color='*primary_50',
68
- body_text_color_dark='*secondary_100',
69
- body_text_color_subdued='*primary_300',
70
- body_text_color_subdued_dark='*primary_300',
71
- background_fill_primary='*primary_600',
72
- background_fill_primary_dark='*primary_400',
73
- background_fill_secondary='*primary_950',
74
- background_fill_secondary_dark='*primary_950',
75
- border_color_accent='*secondary_600',
76
- border_color_primary='*secondary_50',
77
- border_color_primary_dark='*secondary_50',
78
- color_accent='*secondary_50',
79
- color_accent_soft='*primary_500',
80
- color_accent_soft_dark='*primary_500',
81
- link_text_color='*secondary_950',
82
- link_text_color_dark='*primary_50',
83
- link_text_color_active='*primary_50',
84
- link_text_color_active_dark='*primary_50',
85
- link_text_color_hover='*primary_50',
86
- link_text_color_hover_dark='*primary_50',
87
- link_text_color_visited='*primary_50',
88
- block_background_fill='*primary_950',
89
- block_background_fill_dark='*primary_950',
90
- block_border_color='*secondary_500',
91
- block_border_color_dark='*secondary_500',
92
- block_info_text_color='*primary_50',
93
- block_info_text_color_dark='*primary_50',
94
- block_label_background_fill='*primary_950',
95
- block_label_background_fill_dark='*secondary_950',
96
- block_label_border_color='*secondary_500',
97
- block_label_border_color_dark='*secondary_500',
98
- block_label_text_color='*secondary_500',
99
- block_label_text_color_dark='*secondary_500',
100
- block_title_background_fill='*primary_950',
101
- panel_background_fill='*primary_950',
102
- panel_border_color='*primary_950',
103
- checkbox_background_color='*primary_950',
104
- checkbox_background_color_dark='*primary_950',
105
- checkbox_background_color_focus='*primary_950',
106
- checkbox_border_color='*secondary_500',
107
- input_background_fill='*primary_800',
108
- input_background_fill_focus='*primary_950',
109
- input_background_fill_hover='*secondary_950',
110
- input_placeholder_color='*secondary_950',
111
- slider_color='*primary_950',
112
- slider_color_dark='*primary_950',
113
- table_even_background_fill='*primary_800',
114
- table_odd_background_fill='*primary_600',
115
- button_primary_background_fill='*primary_800',
116
- button_primary_background_fill_dark='*primary_800'
117
- )
118
-
119
- random_ch = ['_', '/', '|', '*', '.', '#', '¤', '£', '?', '!', '%', '~', '^', '-', '=', '@', 'o', ']', '[', '§', 'o']
120
-
121
-
122
- def button_change(inputs):
123
- if "Reconstruction Attack" in inputs and "Zero-shot Face Swap" in inputs:
124
- s_s = ""
125
- for s in "Face Swap and Reconstruct":
126
- ch_0 = random_ch[np.random.randint(len(random_ch))]
127
- ch_1 = random_ch[np.random.randint(len(random_ch))]
128
- s_s += s
129
- time.sleep(0.01)
130
- yield gr.Button(ch_0 + s_s + ch_1), gr.CheckboxGroup(value=inputs, interactive=False)
131
- time.sleep(0.01)
132
- yield gr.Button(s_s), gr.CheckboxGroup(value=inputs, interactive=True)
133
- elif "Reconstruction Attack" in inputs and "Zero-shot Face Swap" not in inputs:
134
- s_s = ""
135
- for s in "Anonymize and Reconstruct":
136
- ch_0 = random_ch[np.random.randint(len(random_ch))]
137
- ch_1 = random_ch[np.random.randint(len(random_ch))]
138
- s_s += s
139
- time.sleep(0.01)
140
- yield gr.Button(ch_0 + s_s + ch_1), gr.CheckboxGroup(value=inputs, interactive=False)
141
- time.sleep(0.01)
142
- yield gr.Button(s_s), gr.CheckboxGroup(value=inputs, interactive=True)
143
- elif "Zero-shot Face Swap" in inputs:
144
- s_s = ""
145
- for s in "Face Swap":
146
- ch_0 = random_ch[np.random.randint(len(random_ch))]
147
- ch_1 = random_ch[np.random.randint(len(random_ch))]
148
- s_s += s
149
- time.sleep(0.03)
150
- yield gr.Button(ch_0 + s_s + ch_1), gr.CheckboxGroup(value=inputs, interactive=False)
151
- time.sleep(0.03)
152
- yield gr.Button(s_s), gr.CheckboxGroup(value=inputs, interactive=True)
153
- else:
154
- s_s = ""
155
- for s in "Anonymize":
156
- ch_0 = random_ch[np.random.randint(len(random_ch))]
157
- ch_1 = random_ch[np.random.randint(len(random_ch))]
158
- s_s += s
159
- time.sleep(0.03)
160
- yield gr.Button(ch_0 + s_s + ch_1), gr.CheckboxGroup(value=inputs, interactive=False)
161
- time.sleep(0.03)
162
- yield gr.Button(s_s), gr.CheckboxGroup(value=inputs, interactive=True)
163
-
164
-
165
- with gr.Blocks(theme=theme) as blk_demo:
166
- gr.Markdown(value="# Face Anonymizer")
167
- with gr.Row():
168
- with gr.Column():
169
- with gr.Box():
170
- trg_in = gr.Image(type="pil", label='Target', height=300)
171
- src_in = gr.Image(type="pil", label='Source', height=300)
172
- with gr.Row():
173
- b1 = gr.Button("Anonymize")
174
- with gr.Row():
175
- with gr.Accordion("Options", open=False):
176
- chk_in = gr.CheckboxGroup(["Zero-shot Face Swap",
177
- "Reconstruction Attack",
178
- "Adversarial Defense",
179
- "Use Anchor",
180
- "3DMM"],
181
- value=["Use Anchor"],
182
- label="Mode",
183
- info="Perform zero-shot face swap? "
184
- "Apply reconstruction attack? "
185
- "Apply defense against reconstruction attack? "
186
- "Use anchor identities for fake sampling?")
187
- def_in = gr.Slider(0.0, 0.2, value=0.1,
188
- label='Defense Strength',
189
- info="Strength of the defense noise against reconstruction attacks.")
190
- mrg_in = gr.Slider(0.0, 1.0, value=0.3,
191
- label='Margin',
192
- info="Margin for sampling fake identities.")
193
- slp_in = gr.Slider(0.0, 1.0, value=0.5,
194
- label='SLERP Factor',
195
- info="SLERP disance when establishing anchor identities.")
196
- idi_in = gr.Slider(0.0, 1.0, value=0.0,
197
- label='ID Interpolation',
198
- info="Interpolation between target and source id vectors.")
199
- det_in = gr.Slider(0.1, 2.0, value=1.0,
200
- label='Detection Scale',
201
- info="Resizes the images before passing to the detector.")
202
-
203
- gr.Examples(examples=[['anonymizer/assets/0.jpg'], ['anonymizer/assets/1.jpg'], ['anonymizer/assets/2.jpg'], ['anonymizer/assets/3.jpg'], ['anonymizer/assets/4.jpg']],
204
- inputs=trg_in)
205
- with gr.Column():
206
- with gr.Box():
207
- ano_out = gr.Image(type="pil", label='Output', height=300, min_width=0)
208
- msk_out = gr.Image(type="pil", label='Mask', height=300, min_width=0)
209
- with gr.Row():
210
- with gr.Accordion("Cosine Distances", open=False):
211
- plt_out_0 = gr.Slider(0.0, 2.0, value=0.0, label='',
212
- info="Anonymized and target")
213
- plt_out_1 = gr.Slider(0.0, 2.0, value=0.0, label='',
214
- info="Anonymized and source")
215
- plt_out_2 = gr.Slider(0.0, 2.0, value=0.0, label='',
216
- info="Anonymized and -target")
217
- plt_out_3 = gr.Slider(0.0, 2.0, value=0.0, label='',
218
- info="Target and source")
219
- plt_out_4 = gr.Slider(0.0, 2.0, value=0.0, label='',
220
- info="Anonymized and reconstructed")
221
- plt_out_5 = gr.Slider(0.0, 2.0, value=0.0, label='',
222
- info="Target and reconstructed")
223
- cos_info_box = gr.Markdown("Cosine distance between embeddings of target, anonymized, "
224
- "reconstruction and source. Note that source is the fake identity "
225
- "when using the default anonymization (which will be similar or the same "
226
- "depending on if anchor identities are used). Threshold for False Acceptance "
227
- "Rate (FAR) of 0.001 is 0.63. If you anonymize using no anchors, you can expect facial "
228
- "recognition will find the true identity by searching for -target.")
229
- with gr.Row():
230
- with gr.Accordion("Information", open=False):
231
- with gr.Box():
232
- info_box = gr.Markdown(description + article)
233
-
234
- b1.click(inference, inputs=[trg_in, src_in, chk_in, def_in, mrg_in, slp_in, idi_in, det_in],
235
- outputs=[ano_out, msk_out, plt_out_0, plt_out_1, plt_out_2, plt_out_3, plt_out_4, plt_out_5])
236
- chk_in.change(button_change, inputs=[chk_in], outputs=[b1, chk_in])
237
-
238
 
 
239
  blk_demo.launch()
 
12
 
13
  anonymizer_repo = Repository(local_dir="anonymizer", clone_from="felixrosberg/anonymizer", use_auth_token=token)
14
 
15
+ from anonymizer.face_anonymizer import fetch_demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ blk_demo = fetch_demo()
18
  blk_demo.launch()