File size: 9,876 Bytes
da15054
 
 
 
83aa2ae
 
5290f9e
1448eef
da15054
 
 
 
 
 
d2feb05
da15054
 
 
 
5290f9e
da15054
 
5290f9e
 
 
 
 
 
 
 
 
 
 
 
 
f25cf7a
5290f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c81fd8
5290f9e
 
 
f25cf7a
5290f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f25cf7a
5290f9e
 
 
 
9db8a5d
 
5290f9e
 
9db8a5d
 
5290f9e
9db8a5d
 
5290f9e
 
9db8a5d
 
5290f9e
9db8a5d
5290f9e
 
9db8a5d
 
5290f9e
9db8a5d
 
 
 
9c81fd8
9db8a5d
 
 
 
 
 
 
 
9c81fd8
 
 
 
7e8df8d
 
 
 
 
9c81fd8
 
 
 
 
 
 
 
 
 
5290f9e
 
 
1ef319c
5290f9e
7e8df8d
 
 
 
 
 
5290f9e
 
1448eef
 
 
 
 
5290f9e
1448eef
5290f9e
 
 
 
 
be331fc
5290f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be331fc
 
 
 
 
 
5290f9e
be331fc
5290f9e
 
 
 
 
 
 
 
 
be331fc
 
 
 
 
 
 
 
 
 
 
5a6a4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be331fc
5290f9e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from transformers import pipeline
import matplotlib.pyplot as plt
import streamlit as st
from PIL import Image
import pandas as pd
import numpy as np
import cv2
import tempfile




pipe_yolos = pipeline("object-detection", model="hustvl/yolos-tiny")
pipe_emotions = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
pipe_emotions_refined = pipeline("image-classification", model="felixwf/fine_tuned_face_emotion_model")


st.title("Online Teaching Effect Monitor")

file_name = st.file_uploader("Upload an image or a video")

if file_name is not None:
    if file_name.type.startswith('image'):
        # Process image
        face_image = Image.open(file_name)
        st.image(face_image)
        output = pipe_yolos(face_image)

        data = output
        # 过滤出所有标签为 "person" 的项
        persons = [item for item in data if item['label'] == 'person']
        
        # 打印结果
        print(persons)
        st.text(persons)
        st.subheader(f"Number of persons detected: {len(persons)}")
        
        # 假设有一张原始图片,加载图片并截取出每个 "person" 的部分
        original_image = face_image
        persons_image_list = []
        
        # 截取每个 "person" 的部分并保存
        for idx, person in enumerate(persons):
            box = person['box']
            cropped_image = original_image.crop((box['xmin'], box['ymin'], box['xmax'], box['ymax']))
            cropped_image.save(f'person_{idx}.jpg')
            cropped_image.show()
            persons_image_list.append(cropped_image)
        
        # Calculate the number of rows needed for 3 columns
        num_images = len(persons)
        num_cols = 8
        num_rows = (num_images + num_cols - 1) // num_cols  # Ceiling division

        # Create a new canvas to stitch all person images in a grid with 3 columns
        fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 2 * num_rows))

        # Flatten the axes array for easy iteration
        axes = axes.flatten()

        # Crop each "person" part and plot it on the grid
        for idx, person in enumerate(persons):
            box = person['box']
            cropped_image = original_image.crop((box['xmin'], box['ymin'], box['xmax'], box['ymax']))
            axes[idx].imshow(cropped_image)
            axes[idx].axis('off')
            axes[idx].set_title(f'Person {idx}')

        # Turn off any unused subplots
        for ax in axes[num_images:]:
            ax.axis('off')

        # 识别每个人的表情
        output_list_emotions = []
        output_list_emotions_refined = []
        
        for idx, face in enumerate(persons_image_list):
          print(f"processing {idx}")
          output = pipe_emotions(face)
          output_list_emotions.append(output[0])
          output = pipe_emotions_refined(face)
          output_list_emotions_refined.append(output[0])
        
        print(output_list_emotions)
        st.subheader("Emotions by model: dima806/facial_emotions_image_detection")
        st.text(output_list_emotions)
        print(output_list_emotions_refined)
        st.subheader("Actions by model: felixwf/fine_tuned_face_emotion_model")
        st.text(output_list_emotions_refined)

        
        # 统计各种标签的数量
        label_counts_emotions = {}
        label_counts_actions = {}
        for item in output_list_emotions:
            label = item['label']
            if label in label_counts_emotions:
                label_counts_emotions[label] += 1
            else:
                label_counts_emotions[label] = 1

        for item in output_list_emotions_refined:
            label = item['label']
            if label in label_counts_actions:
                label_counts_actions[label] += 1
            else:
                label_counts_actions[label] = 1

        # 绘制饼状图
        labels_emotions = list(label_counts_emotions.keys())
        sizes_emotions = list(label_counts_emotions.values())
        
        pie_fig_emotions, pie_ax_emotions = plt.subplots()
        pie_ax_emotions.pie(sizes_emotions, labels=labels_emotions, autopct='%1.1f%%', startangle=140)
        pie_ax_emotions.set_title('Distribution of Emotions')
        pie_ax_emotions.axis('equal')  # 确保饼状图为圆形

        labels_actions = list(label_counts_actions.keys())
        sizes_actions = list(label_counts_actions.values())
        
        pie_fig_actions, pie_ax_actions = plt.subplots()
        pie_ax_actions.pie(sizes_actions, labels=labels_actions, autopct='%1.1f%%', startangle=140)
        pie_ax_actions.set_title('Distribution of Actions')
        pie_ax_actions.axis('equal')  # 确保饼状图为圆形
        

        labels_refined = [item['label'] for item in output_list_emotions_refined]
        label_counts_refined = {label: labels_refined.count(label) for label in set(labels_refined)}

        bar_fig_actions, bar_ax_actions = plt.subplots()
        bar_ax_actions.bar(label_counts_refined.keys(), label_counts_refined.values())
        bar_ax_actions.set_title('Distribution of Actions')
        bar_ax_actions.set_xlabel('Emotions')
        bar_ax_actions.set_ylabel('Count')

        labels_emotions = [item['label'] for item in output_list_emotions]
        label_counts_emotions = {label: labels_emotions.count(label) for label in set(labels_emotions)}

        bar_fig_emotions, bar_ax_emotions = plt.subplots()
        bar_ax_emotions.bar(label_counts_emotions.keys(), label_counts_emotions.values())
        bar_ax_emotions.set_title('Distribution of Emotions')
        bar_ax_emotions.set_xlabel('Emotions')
        bar_ax_emotions.set_ylabel('Count')
        
        # plt.show()
        # Use Streamlit columns to display the images and pie chart side by side

        st.pyplot(fig)  # Display the stitched person images

        col1, col2 = st.columns(2)
        col1.pyplot(pie_fig_emotions)  # Display the pie chart
        col2.pyplot(bar_fig_emotions)  # Display the bar chart

        col1.pyplot(pie_fig_actions)  # Display the pie chart
        col2.pyplot(bar_fig_actions)  # Display the bar chart

    elif file_name.type.startswith('video'):
        # Save the uploaded video to a temporary file
        with tempfile.NamedTemporaryFile(delete=False) as temp_video_file:
            temp_video_file.write(file_name.read())
            temp_video_path = temp_video_file.name

        # Process video
        video = cv2.VideoCapture(temp_video_path)
        frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_interval = frame_rate  # Process one frame per second

        frame_emotions = []
        frame_emotions_refined = []
        for frame_idx in range(0, frame_count, frame_interval):
            video.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
            ret, frame = video.read()
            if not ret:
                break

            # Convert frame to PIL Image
            frame_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            output = pipe_yolos(frame_image)

            data = output
            persons = [item for item in data if item['label'] == 'person']
            persons_image_list = []

            for person in persons:
                box = person['box']
                cropped_image = frame_image.crop((box['xmin'], box['ymin'], box['xmax'], box['ymax']))
                persons_image_list.append(cropped_image)

            # Recognize emotions for each person in the frame
            frame_emotion = []
            for face in persons_image_list:
                output = pipe_emotions(face)
                frame_emotion.append(output[0]['label'])
            frame_emotions.append(frame_emotion)
            
            frame_emotion_refined = []
            for face in persons_image_list:
                output = pipe_emotions_refined(face)
                frame_emotion_refined.append(output[0]['label'])
            frame_emotions_refined.append(frame_emotion_refined)

        # Plot number of persons detected over frames
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(range(len(frame_emotions)), [len(emotions) for emotions in frame_emotions], label='Number of Persons Detected')
        ax.set_xlabel('Frame')
        ax.set_ylabel('Number of Persons')
        ax.set_title('Number of Persons Detected Over Frames')
        ax.legend()

        st.pyplot(fig)

        # Plot emotions over frames, using the same frame index
        fig, ax = plt.subplots(figsize=(10, 5))
        for emotion in frame_emotions_refined[0]:
            ax.bar(range(len(frame_emotions_refined)), [emotion_counts[emotion] for emotion_counts in frame_emotions_refined], label=emotion)
        ax.set_xlabel('Frame')
        ax.set_ylabel('Emotion Count')
        ax.set_title('Emotion Distribution Over Frames')
        ax.legend()

        st.pyplot(fig)

        # Assuming frame_emotions_refined is a list of lists, where each sublist contains emotion labels for a frame
        fig, ax = plt.subplots(figsize=(10, 5))

        # Iterate over each frame's emotions
        for frame_idx, emotions in enumerate(frame_emotions_refined):
            # Count occurrences of each emotion in the current frame
            emotion_counts = {emotion: emotions.count(emotion) for emotion in set(emotions)}
            
            # Plot the emotion counts for the current frame
            ax.clear()
            ax.bar(emotion_counts.keys(), emotion_counts.values())
            ax.set_title(f"Frame {frame_idx + 1}")
            ax.set_xlabel('Emotions')
            ax.set_ylabel('Count')
            
            # Display the plot for the current frame
            st.pyplot(fig)

    else:
        st.error("Unsupported file type. Please upload an image or a video.")