File size: 6,336 Bytes
19d4726
 
b149299
19d4726
 
 
 
 
b29b5d8
b2dc20d
6875045
b2dc20d
19d4726
 
b2dc20d
b149299
19d4726
 
 
 
 
6875045
 
b2dc20d
6875045
 
f1c1edb
 
6875045
 
 
 
f1c1edb
 
6875045
 
19d4726
 
 
6875045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d4726
6875045
 
 
19d4726
 
6875045
19d4726
6875045
19d4726
 
 
 
 
 
6875045
19d4726
 
 
b29b5d8
19d4726
 
 
 
 
 
 
6875045
19d4726
 
 
b29b5d8
 
 
19d4726
 
b29b5d8
19d4726
 
b2dc20d
 
 
 
 
 
b149299
 
b2dc20d
 
b149299
b2dc20d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b149299
 
b2dc20d
b149299
 
 
 
19d4726
 
 
 
 
 
6875045
 
b2dc20d
 
 
 
 
b149299
 
 
f1c1edb
 
6447205
 
 
b149299
 
 
 
 
 
 
 
 
 
 
 
4158c5a
6447205
b149299
b2dc20d
b149299
 
19d4726
 
 
b2dc20d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import logging
import os
from pathlib import Path
from typing import List, Tuple

import gradio as gr
import pandas as pd
import spacy
import torch

from dante_tokenizer import DanteTokenizer

from transformers import AutoModelForTokenClassification, AutoTokenizer

from preprocessing import *

try:
    nlp = spacy.load("pt_core_news_sm")
except Exception:
    os.system("python -m spacy download pt_core_news_sm")
    nlp = spacy.load("pt_core_news_sm")
dt_tokenizer = DanteTokenizer()

default_model = "Tweets (stock market)"
model_choices = {
    "News": "Emanuel/porttagger-news-base",
    "Tweets (stock market)": "Emanuel/porttagger-tweets-base",
    "Oil and Gas (academic texts)": "Emanuel/porttagger-oilgas-base",
    "Multigenre": "Emanuel/porttagger-base",
}
pre_tokenizers = {
    "News": nlp,
    "Tweets (stock market)": dt_tokenizer.tokenize,
    "Oil and Gas (academic texts)": nlp,
    "Multigenre": nlp,
}
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

class MyApp:
    def __init__(self) -> None:
        self.model = None
        self.tokenizer = None
        self.pre_tokenizer = None
        self.load_model()

    def load_model(self, model_name: str = default_model):
        if model_name not in model_choices.keys():
            logger.error("Selected model is not supported, resetting to the default model.")
            model_name = default_model
        self.model = AutoModelForTokenClassification.from_pretrained(model_choices[model_name])
        self.tokenizer = AutoTokenizer.from_pretrained(model_choices[model_name])
        self.pre_tokenizer = pre_tokenizers[model_name]

myapp = MyApp()

def predict(text, logger=None) -> Tuple[List[str], List[str]]:
    doc = myapp.pre_tokenizer(text)
    tokens = [token.text if not isinstance(token, str) else token for token in doc]

    logger.info("Starting predictions for sentence: {}".format(text))
    print("Using model {}".format(myapp.model.config.__dict__["_name_or_path"]))

    input_tokens = myapp.tokenizer(
        tokens,
        return_tensors="pt",
        is_split_into_words=True,
        return_offsets_mapping=True,
        return_special_tokens_mask=True,
    )
    output = myapp.model(input_tokens["input_ids"])

    i_token = 0
    labels = []
    scores = []
    for off, is_special_token, pred in zip(
        input_tokens["offset_mapping"][0],
        input_tokens["special_tokens_mask"][0],
        output.logits[0],
    ):
        if is_special_token or off[0] > 0:
            continue
        label = myapp.model.config.__dict__["id2label"][int(pred.argmax(axis=-1))]
        if logger is not None:
            logger.info("{}, {}, {}".format(off, tokens[i_token], label))
        labels.append(label)
        scores.append(
            "{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max()))
        )
        i_token += 1

    return tokens, labels, scores


def batch_analysis_csv(input_file, id_column: str='tweet_id', content_column: str='content', prefix: str='dante_02', keep_replace_contraction=True):
    df = pd.read_csv(input_file.name, encoding='utf-8')
    ids = df[id_column]
    texts = df[content_column]
    texts = texts.replace(r'\\n', ' ', regex=True)
    texts = texts.apply(lambda x : x.strip())
    conllu_output = []

    for id, sent in zip(ids, texts):
        conllu_output.append("# sent_id = {}_{}\n".format(prefix, id))
        conllu_output.append("# text = {}\n".format(sent))
        tokens, labels, _ = predict(sent, logger)
        tokens_labels = list(zip(tokens, labels))

        for j, (token, label) in enumerate(tokens_labels):
            try:
                contr = tokens_labels[j][0] + ' ' + tokens_labels[j+1][0]
                for expansion in expansions.keys():
                    replace_str = expansions[expansion]
                    match = re.match(expansion, contr, re.I)
                    expansion = replace_keep_case(expansion, replace_str, contr)
                    if match is not None:
                        conllu_output.append("{}\t{}".format(str(j+1)+'-'+str(j+2), expansion) + "\t_" * 8 + "\n")
                        break
                conllu_output.append("{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 6 + "\n")
            except IndexError:
                conllu_output.append("{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 6 + "\n") 
        conllu_output.append("\n")
    output_filename = "output.conllu"
    with open(output_filename, "w", encoding='utf-8') as out_f:
        out_f.writelines(conllu_output)
    return {output_file: output_file.update(visible=True, value=output_filename)}


css = open("style.css").read()
top_html = open("top.html").read()
bottom_html = open("bottom.html").read()

with gr.Blocks(css=css) as demo:
    gr.HTML(top_html)
    select_model = gr.Dropdown(choices=list(model_choices.keys()), label="Tagger model", value=default_model)
    select_model.change(myapp.load_model, inputs=[select_model])
    
    id_column = gr.Textbox(placeholder='tweet_id', label='Id column')
    content_column = gr.Textbox(placeholder='content', label='Content column')
    label_prefix = gr.Textbox(placeholder='dante_02', label='Label prefix')

    with gr.Tab("Multiple sentences"):
        gr.HTML(
            """
        <p align="justify"">
        &emsp;Upload a plain text file with sentences in it. 
        Find below an example of what we expect the content of the file to look like. 
        Sentences are automatically split by spaCy's sentencizer. 
        To force an explicit segmentation, manually separate the sentences using a new line for each one.</p>
        """
        )
        gr.Markdown(
            """
        ```
        Então ele hesitou, quase como se estivesse surpreso com as próprias palavras, e recitou:
        – Vá e não tornes a pecar!
        Baley, sorrindo de repente, pegou no cotovelo de R. Daneel e eles saíram juntos pela porta.
        ```
        """
        )
        input_file = gr.File(label="Upload your input file here...")
        output_file = gr.File(label="Tagged file", visible=False)
        submit_btn_batch = gr.Button("Tag it")
        submit_btn_batch.click(
            fn=batch_analysis_csv, inputs=[input_file, id_column], outputs=output_file
        )

    gr.HTML(bottom_html)


demo.launch(debug=True)