Emanuel's picture
Updated text description and buttons labels
6447205
raw
history blame
5.64 kB
import logging
import os
import tempfile
from pathlib import Path
from typing import List, Tuple
import gradio as gr
import pandas as pd
import spacy
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer
from preprocessing import expand_contractions
try:
nlp = spacy.load("pt_core_news_sm")
except Exception:
os.system("python -m spacy download pt_core_news_sm")
nlp = spacy.load("pt_core_news_sm")
model = AutoModelForTokenClassification.from_pretrained("Emanuel/porttagger-news-base")
tokenizer = AutoTokenizer.from_pretrained("Emanuel/porttagger-news-base")
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
def predict(text, nlp, logger=None) -> Tuple[List[str], List[str]]:
doc = nlp(text)
tokens = [token.text for token in doc]
logger.info("Starting predictions for sentence: {}".format(text))
input_tokens = tokenizer(
tokens,
return_tensors="pt",
is_split_into_words=True,
return_offsets_mapping=True,
return_special_tokens_mask=True,
)
output = model(input_tokens["input_ids"])
i_token = 0
labels = []
scores = []
for off, is_special_token, pred in zip(
input_tokens["offset_mapping"][0],
input_tokens["special_tokens_mask"][0],
output.logits[0],
):
if is_special_token or off[0] > 0:
continue
label = model.config.__dict__["id2label"][int(pred.argmax(axis=-1))]
if logger is not None:
logger.info("{}, {}, {}".format(off, tokens[i_token], label))
labels.append(label)
scores.append(
"{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max()))
)
i_token += 1
return tokens, labels, scores
def text_analysis(text):
text = expand_contractions(text)
tokens, labels, scores = predict(text, nlp, logger)
pos_count = pd.DataFrame(
{
"token": tokens,
"etiqueta": labels,
"confiança": scores,
}
)
pos_tokens = []
for token, label in zip(tokens, labels):
pos_tokens.extend([(token, label), (" ", None)])
output_highlighted.update(visible=True)
output_df.update(visible=True)
return {
output_highlighted: output_highlighted.update(visible=True, value=(pos_tokens)),
output_df: output_df.update(visible=True, value=pos_count),
}
def batch_analysis(input_file):
text = open(input_file.name, encoding="utf-8").read()
text = text.split("\n")
name = Path(input_file.name).stem
sents = []
for sent in text:
sub_sents = nlp(sent).sents
sub_sents = [str(_sent).strip() for _sent in sub_sents]
sents += sub_sents
conllu_output = []
for i, sent in enumerate(sents):
sent = expand_contractions(sent)
conllu_output.append("# sent_id = {}-{}\n".format(name, i + 1))
conllu_output.append("# text = {}\n".format(sent))
tokens, labels, scores = predict(sent, nlp, logger)
for j, (token, label) in enumerate(zip(tokens, labels)):
conllu_output.append(
"{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 5 + "\n"
)
conllu_output.append("\n")
output_filename = "output.conllu"
with open(output_filename, "w") as out_f:
out_f.writelines(conllu_output)
return {output_file: output_file.update(visible=True, value=output_filename)}
css = open("style.css").read()
top_html = open("top.html").read()
bottom_html = open("bottom.html").read()
with gr.Blocks(css=css) as demo:
gr.HTML(top_html)
with gr.Tab("Single sentence"):
text = gr.Textbox(placeholder="Enter your text here...", label="Input")
examples = gr.Examples(
examples=[
[
"A população não poderia ter acesso a relatórios que explicassem, por exemplo, os motivos exatos de atrasos em obras de linhas e estações."
],
[
"Filme 'Star Wars : Os Últimos Jedi' ganha trailer definitivo; assista."
],
],
inputs=[text],
label="Select an example",
)
output_highlighted = gr.HighlightedText(label="Colorful output", visible=False)
output_df = gr.Dataframe(label="Tabular output", visible=False)
submit_btn = gr.Button("Tag it")
submit_btn.click(
fn=text_analysis, inputs=text, outputs=[output_highlighted, output_df]
)
with gr.Tab("Multiple sentences"):
gr.HTML(
"""
<p>Upload a plain text file with sentences in it.
Find below an example of what we expect the content of the file to look like.
Sentences are automatically split by spaCy's sentencizer.
To force an explicit segmentation, manually separate the sentences using a new line for each one.</p>
"""
)
gr.Markdown(
"""
```
Então ele hesitou, quase como se estivesse surpreso com as próprias palavras, e recitou:
– Vá e não tornes a pecar!
Baley, sorrindo de repente, pegou no cotovelo de R. Daneel e eles saíram juntos pela porta.
```
"""
)
input_file = gr.File(label="Upload your input file here...")
output_file = gr.File(visible=False)
submit_btn_batch = gr.Button("Tag it")
submit_btn_batch.click(
fn=batch_analysis, inputs=input_file, outputs=output_file
)
gr.HTML(bottom_html)
demo.launch(debug=True, server_port=15000)