Update src/streamlit_app.py
Browse files- src/streamlit_app.py +12 -3
src/streamlit_app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from langchain_huggingface import HuggingFaceEndpoint
|
3 |
-
|
4 |
|
5 |
# constants
|
6 |
QUESTION = "Compute the integral of f(x) = x^2."
|
@@ -59,12 +59,21 @@ with st.container():
|
|
59 |
|
60 |
with col1:
|
61 |
if st.button("π Explain the question"):
|
|
|
|
|
|
|
62 |
st.session_state.button_clicked = "Explain the question"
|
63 |
with col2:
|
64 |
if st.button("π‘ Give an example"):
|
|
|
|
|
|
|
65 |
st.session_state.button_clicked = "Give an example"
|
66 |
with col3:
|
67 |
if st.button("π€ Who cares?"):
|
|
|
|
|
|
|
68 |
st.session_state.button_clicked = "Who cares?"
|
69 |
|
70 |
st.markdown("---")
|
@@ -72,7 +81,7 @@ with st.container():
|
|
72 |
# Display response text if a sub-button is clicked
|
73 |
if st.session_state.button_clicked:
|
74 |
with st.container():
|
75 |
-
st.info(
|
76 |
|
77 |
# Optional: Add footer or spacing
|
78 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
@@ -95,7 +104,7 @@ st.markdown(
|
|
95 |
)
|
96 |
|
97 |
# source: https://medium.com/@james.irving.phd/creating-your-personal-chatbot-using-hugging-face-spaces-and-streamlit-596a54b9e3ed
|
98 |
-
def
|
99 |
"""
|
100 |
Returns a language model for HuggingFace inference.
|
101 |
|
|
|
1 |
import streamlit as st
|
2 |
from langchain_huggingface import HuggingFaceEndpoint
|
3 |
+
import os
|
4 |
|
5 |
# constants
|
6 |
QUESTION = "Compute the integral of f(x) = x^2."
|
|
|
59 |
|
60 |
with col1:
|
61 |
if st.button("π Explain the question"):
|
62 |
+
prompt = f"[INST]You are a thoughtful AI assistant.\nUser: {QUESTION} [/INST]\nAI:"
|
63 |
+
st.session_state.response = llm.invoke(prompt)
|
64 |
+
|
65 |
st.session_state.button_clicked = "Explain the question"
|
66 |
with col2:
|
67 |
if st.button("π‘ Give an example"):
|
68 |
+
prompt = f"[INST]You are a thoughtful AI assistant.\nUser: {QUESTION} [/INST]\nAI:"
|
69 |
+
st.session_state.response = llm.invoke(prompt)
|
70 |
+
|
71 |
st.session_state.button_clicked = "Give an example"
|
72 |
with col3:
|
73 |
if st.button("π€ Who cares?"):
|
74 |
+
prompt = f"[INST]You are a thoughtful AI assistant.\nUser: {QUESTION} [/INST]\nAI:"
|
75 |
+
st.session_state.response = llm.invoke(prompt)
|
76 |
+
|
77 |
st.session_state.button_clicked = "Who cares?"
|
78 |
|
79 |
st.markdown("---")
|
|
|
81 |
# Display response text if a sub-button is clicked
|
82 |
if st.session_state.button_clicked:
|
83 |
with st.container():
|
84 |
+
st.info(st.session_state.response)
|
85 |
|
86 |
# Optional: Add footer or spacing
|
87 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
|
|
104 |
)
|
105 |
|
106 |
# source: https://medium.com/@james.irving.phd/creating-your-personal-chatbot-using-hugging-face-spaces-and-streamlit-596a54b9e3ed
|
107 |
+
def get_llm(model_id=MODEL, max_new_tokens=130, temperature=0.7):
|
108 |
"""
|
109 |
Returns a language model for HuggingFace inference.
|
110 |
|