File size: 1,086 Bytes
ccf69c4
02422ea
 
 
 
 
ccf69c4
a30d3cd
002de53
0bfafc9
ccf69c4
0bfafc9
30bd241
 
002de53
 
 
 
 
52a149c
002de53
 
 
 
 
 
 
 
 
 
 
 
032fe98
52a149c
032fe98
 
 
 
52a149c
032fe98
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import argparse
import functools
import os
import pickle
import sys
from datasets import Dataset
import gradio as gr
from pynvml import *
from transformers import pipeline

pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
def predict(text):
  return pipe(text)[0]["translation_text"]

def print_gpu_utilization():
    nvmlInit()
    handle = nvmlDeviceGetHandleByIndex(0)
    info = nvmlDeviceGetMemoryInfo(handle)
    return f"GPU memory occupied: {info.used//1024**2} MB."


def print_summary(result):
    print(f"Time: {result.metrics['train_runtime']:.2f}")
    print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
    print_gpu_utilization()
seq_len, dataset_size = 512, 512
dummy_data = {
    "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),
    "labels": np.random.randint(0, 1, (dataset_size)),
}
ds = Dataset.from_dict(dummy_data)
ds.set_format("pt")
result = print_gpu_utilization()
iface = gr.Interface(
  fn=predict, 
  inputs='text',
  outputs='text',
  examples=[f'{result}']
)

iface.launch()