Spaces:
Runtime error
Runtime error
File size: 8,276 Bytes
7f1014c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
from __future__ import annotations
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
import torch
try:
import intel_extension_for_pytorch as ipex
except:
pass
from diffusers import DiffusionPipeline
import torch
import os
import torch
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor
import uuid
DESCRIPTION = '''# Latent Consistency Model
Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine-tune of [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with only 4,000 training iterations (~32 A100 GPU Hours). [Project page](https://latent-consistency-models.github.io)
'''
if torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CUDA π</p>"
elif hasattr(torch, 'xpu') and torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on XPU π€</p>"
else:
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
"""
Operation System Options:
If you are using MacOS, please set the following (device="mps") ;
If you are using Linux & Windows with Nvidia GPU, please set the device="cuda";
If you are using Linux & Windows with Intel Arc GPU, please set the device="xpu";
"""
# device = "mps" # MacOS
#device = "xpu" # Intel Arc GPU
device = "cuda" # Linux & Windows
"""
DTYPE Options:
To reduce GPU memory you can set "DTYPE=torch.float16",
but image quality might be compromised
"""
DTYPE = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
#pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")
pipe = DiffusionPipeline.from_pretrained("D:/git-work/LCM_Dreamshaper_v7")
#pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
pipe.to(torch_device=device, torch_dtype=DTYPE)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict, root_path='./'):
unique_name = str(uuid.uuid4()) + '.png'
unique_name = os.path.join(root_path, unique_name)
img.save(unique_name)
# gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
return unique_name
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
paths = []
root_path = './images/'
os.makedirs(root_path, exist_ok=True)
with ThreadPoolExecutor() as executor:
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array), [root_path]*len(image_array)))
return paths
def generate(
prompt: str,
seed: int = 0,
width: int = 512,
height: int = 512,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
num_images: int = 4,
randomize_seed: bool = False,
param_dtype='torch.float16',
progress = gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
start_time = time.time()
result = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
lcm_origin_steps=50,
output_type="pil",
).images
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
print(time.time() - start_time)
return paths, seed
examples = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery",
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
#minimum=256,
minimum=128,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=8,
step=1,
value=1,#ηζεΎηηζ°ι
visible=True,
)
dtype_choices = ['torch.float16','torch.float32']
param_dtype = gr.Radio(dtype_choices,label='torch.dtype',
value=dtype_choices[0],
interactive=True,
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
# with gr.Accordion("Past generations", open=False):
# gr_user_history.render()
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
num_images,
randomize_seed,
param_dtype
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(api_open=False)
# demo.queue(max_size=20).launch()
demo.launch(share=True)
#demo.launch()
|