demo / app.py
Antonio
Changed prediction output from JSON to HTML
5214bf4
raw
history blame
10.5 kB
import gradio as gr
import os
import subprocess
import numpy as np
import torch
import torch.nn.functional as F
import librosa
import av
from transformers import VivitImageProcessor, VivitForVideoClassification
from transformers import AutoConfig, Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
from moviepy.editor import VideoFileClip
def get_emotion_from_filename(filename):
parts = filename.split('-')
emotion_code = int(parts[2])
emotion_labels = {
1: 'neutral',
3: 'happy',
4: 'sad',
5: 'angry',
6: 'fearful',
7: 'disgust'
}
return emotion_labels.get(emotion_code, None)
def separate_video_audio(file_path):
output_dir = './temp/'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
video_path = os.path.join(output_dir, os.path.basename(file_path).replace('.mp4', '_video.mp4'))
audio_path = os.path.join(output_dir, os.path.basename(file_path).replace('.mp4', '_audio.wav'))
video_cmd = ['ffmpeg', '-loglevel', 'quiet', '-i', file_path, '-an', '-c:v', 'libx264', '-preset', 'ultrafast', video_path]
subprocess.run(video_cmd, check=True)
audio_cmd = ['ffmpeg', '-loglevel', 'quiet', '-i', file_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '16000', audio_path]
subprocess.run(audio_cmd, check=True)
return video_path, audio_path
def delete_files_in_directory(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def process_video(file_path):
container = av.open(file_path)
indices = sample_frame_indices(clip_len=32, frame_sample_rate=2, seg_len=container.streams.video[0].frames)
video = read_video_pyav(container=container, indices=indices)
container.close()
return video
def read_video_pyav(container, indices):
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frame = frame.reformat(width=224, height=224)
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
def video_label_to_emotion(label):
label_map = {0: 'neutral', 1: 'happy', 2: 'sad', 3: 'angry', 4: 'fearful', 5: 'disgust'}
label_index = int(label.split('_')[1])
return label_map.get(label_index, "Unknown Label")
def predict_video(file_path, video_model, image_processor):
video = process_video(file_path)
inputs = image_processor(list(video), return_tensors="pt")
device = torch.device("cpu")
inputs = inputs.to(device)
with torch.no_grad():
outputs = video_model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=-1).squeeze()
emotion_probabilities = {video_label_to_emotion(video_model.config.id2label[idx]): float(prob) for idx, prob in enumerate(probs)}
return emotion_probabilities
def audio_label_to_emotion(label):
label_map = {0: 'angry', 1: 'disgust', 2: 'fearful', 3: 'happy', 4: 'neutral', 5: 'sad'}
label_index = int(label.split('_')[1])
return label_map.get(label_index, "Unknown Label")
def preprocess_and_predict_audio(file_path, model, processor):
audio_array, _ = librosa.load(file_path, sr=16000)
inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt", padding=True, max_length=75275)
device = torch.device("cpu")
model = model.to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(**inputs)
logits = output.logits
probabilities = F.softmax(logits, dim=-1)
emotion_probabilities = {audio_label_to_emotion(model.config.id2label[idx]): float(prob) for idx, prob in enumerate(probabilities[0])}
return emotion_probabilities
def averaging_method(video_prediction, audio_prediction):
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
combined_probabilities[label] = (video_prediction.get(label, 0) + audio_prediction.get(label, 0)) / 2
consensus_label = max(combined_probabilities, key=combined_probabilities.get)
return consensus_label
def weighted_average_method(video_prediction, audio_prediction):
video_weight = 0.88
audio_weight = 0.6
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
combined_probabilities[label] = (video_weight * video_prob + audio_weight * audio_prob) / (video_weight + audio_weight)
consensus_label = max(combined_probabilities, key=combined_probabilities.get)
return consensus_label
def confidence_level_method(video_prediction, audio_prediction, threshold=0.7):
highest_video_label = max(video_prediction, key=video_prediction.get)
highest_video_confidence = video_prediction[highest_video_label]
if highest_video_confidence >= threshold:
return highest_video_label
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
combined_probabilities[label] = (video_prob + audio_prob) / 2
return max(combined_probabilities, key=combined_probabilities.get)
def dynamic_weighting_method(video_prediction, audio_prediction):
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
video_confidence = video_prob / sum(video_prediction.values())
audio_confidence = audio_prob / sum(audio_prediction.values())
video_weight = video_confidence / (video_confidence + audio_confidence)
audio_weight = audio_confidence / (video_confidence + audio_confidence)
combined_probabilities[label] = (video_weight * video_prob + audio_weight * audio_prob)
return max(combined_probabilities, key=combined_probabilities.get)
def rule_based_method(video_prediction, audio_prediction, threshold=0.5):
highest_video_label = max(video_prediction, key=video_prediction.get)
highest_audio_label = max(audio_prediction, key=audio_prediction.get)
video_confidence = video_prediction[highest_video_label] / sum(video_prediction.values())
audio_confidence = audio_prediction[highest_audio_label] / sum(audio_prediction.values())
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
combined_probabilities[label] = (video_prob + audio_prob) / 2
if (highest_video_label == highest_audio_label and video_confidence > threshold and audio_confidence > threshold):
return highest_video_label
elif video_confidence > audio_confidence:
return highest_video_label
elif audio_confidence > video_confidence:
return highest_audio_label
return max(combined_probabilities, key=combined_probabilities.get)
decision_frameworks = {
"Averaging": averaging_method,
"Weighted Average": weighted_average_method,
"Confidence Level": confidence_level_method,
"Dynamic Weighting": dynamic_weighting_method,
"Rule-Based": rule_based_method
}
def predict(video_file, video_model_name, audio_model_name, framework_name):
image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
if video_model_name == "60% Accuracy":
video_model = torch.load("video_model_60_acc.pth", map_location=torch.device('cpu'))
elif video_model_name == "80% Accuracy":
video_model = torch.load("video_model_80_acc.pth", map_location=torch.device('cpu'))
model_id = "facebook/wav2vec2-large"
config = AutoConfig.from_pretrained(model_id, num_labels=6)
audio_processor = AutoFeatureExtractor.from_pretrained(model_id)
audio_model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id, config=config)
if audio_model_name == "60% Accuracy":
audio_model.load_state_dict(torch.load("audio_model_state_dict_6e.pth", map_location=torch.device('cpu')))
audio_model.eval()
delete_directory_path = "./temp/"
video_path, audio_path = separate_video_audio(video_file.name)
video_prediction = predict_video(video_path, video_model, image_processor)
highest_video_emotion = max(video_prediction, key=video_prediction.get)
audio_prediction = preprocess_and_predict_audio(audio_path, audio_model, audio_processor)
highest_audio_emotion = max(audio_prediction, key=audio_prediction.get)
framework_function = decision_frameworks[framework_name]
consensus_label = framework_function(video_prediction, audio_prediction)
delete_files_in_directory(delete_directory_path)
result = f"""
<h2>Predictions</h2>
<p><strong>Video Label:</strong> {highest_video_emotion}</p>
<p><strong>Audio Label:</strong> {highest_audio_emotion}</p>
<p><strong>Consensus Label:</strong> {consensus_label}</p>
"""
return result, video_file.name
inputs = [
gr.Video(label="Upload Video"),
gr.Dropdown(["60% Accuracy", "80% Accuracy"], label="Select Video Model"),
gr.Dropdown(["60% Accuracy"], label="Select Audio Model"),
gr.Dropdown(list(decision_frameworks.keys()), label="Select Decision Framework")
]
outputs = [
gr.HTML(label="Predictions")
]
iface = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title="Video and Audio Emotion Prediction",
description="Upload a video to get emotion predictions from selected video and audio models."
)
iface.launch(debug=True, share=True)