Spaces:
Sleeping
Sleeping
File size: 6,843 Bytes
81470e4 61c3568 2fea0af eef1213 81470e4 c52b425 c9e36ee 81470e4 2fea0af 61c3568 2fea0af eef1213 2fea0af eef1213 2fea0af 61c3568 6219873 30f3747 2fea0af 61c3568 eef1213 6219873 eef1213 2fea0af c1bd305 eef1213 2fea0af 6219873 eef1213 c1bd305 2fea0af c1bd305 4a3db98 81470e4 c1bd305 81470e4 4a3db98 c1bd305 30f3747 81470e4 c1bd305 4a3db98 c1bd305 4a3db98 c1bd305 4a3db98 6219873 c1bd305 4a3db98 c1bd305 4a3db98 c1bd305 4a3db98 c1bd305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
from infer import inference
import unicodedata
import regex
import threading
description = '''
Програма для перетворення текста в мову. Озвучування тексту українською мовою за допомогою штучного інтелекту
'''
# Text Pre-processing Functions
def normalize_text(text):
return unicodedata.normalize('NFC', text)
def remove_combining_chars(text):
decomposed = unicodedata.normalize('NFD', text)
filtered = ''.join(c for c in decomposed if unicodedata.category(c) != 'Mn')
return unicodedata.normalize('NFC', filtered)
def adjust_case(original, replacement):
if original.isupper():
return replacement.upper()
elif original[0].isupper() and original[1:].islower():
return replacement.capitalize()
elif original.islower():
return replacement.lower()
else:
adjusted = ''
for o_char, r_char in zip(original, replacement):
if o_char.isupper():
adjusted += r_char.upper()
else:
adjusted += r_char.lower()
adjusted += replacement[len(original):]
return adjusted
def replace_with_custom_dict(text, custom_dict, unknown_words):
text = normalize_text(text)
tokens = regex.findall(r'[\p{L}\p{M}\+]+|\s+|[^\s\p{L}\p{M}]+', text)
new_tokens = []
for token in tokens:
token_normalized = normalize_text(token)
if regex.match(r'^[\p{L}\p{M}\+]+$', token_normalized):
token_no_combining = remove_combining_chars(token_normalized)
base_token = token_no_combining.replace('+', '').lower()
base_token = normalize_text(base_token)
if base_token in custom_dict:
replacement = custom_dict[base_token]
adjusted_replacement = adjust_case(token, replacement)
new_tokens.append(adjusted_replacement)
else:
new_tokens.append(token)
unknown_words.add(base_token)
else:
new_tokens.append(token)
return ''.join(new_tokens)
def convert_accented_text(text):
result = ""
for char in text:
decomposed = unicodedata.normalize('NFD', char)
if any('COMBINING ACUTE ACCENT' in unicodedata.name(c, '') for c in decomposed):
base_char = ''.join([c for c in decomposed if 'COMBINING ACUTE ACCENT' not in unicodedata.name(c, '')])
result += unicodedata.normalize('NFC', base_char) + "+"
else:
result += unicodedata.normalize('NFC', char)
return result
def add_pauses_to_text(text):
text = text.replace(':', ':::')
text = text.replace(',', ',:::')
text = text.replace(';', ';:::')
text = text.replace('—', '—:::')
text = text.replace('–', '–:::')
text = text.replace('.', '. ... ... ')
text = text.replace('!', '! ... ...')
text = text.replace('?', '? ... ...')
return text
# Load the custom dictionary from dict.txt
custom_dict = {}
with open('dict.txt', 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
line_normalized = normalize_text(line)
base_word = remove_combining_chars(line_normalized.replace('+', '').lower())
custom_dict[base_word] = line_normalized
# Load existing words from new_dict.txt
existing_new_dict_words = set()
try:
with open('new_dict.txt', 'r', encoding='utf-8') as f:
for line in f:
existing_word = line.strip()
if existing_word:
existing_new_dict_words.add(existing_word)
except FileNotFoundError:
pass # If the file doesn't exist, we'll create it later
# Lock for thread-safe file writing
file_lock = threading.Lock()
def transform_text(text, apply_custom_dict, add_pauses_flag):
unknown_words = set()
text = normalize_text(text)
if apply_custom_dict:
text = replace_with_custom_dict(text, custom_dict, unknown_words)
text = convert_accented_text(text)
if add_pauses_flag:
text = add_pauses_to_text(text)
# Write unknown words to new_dict.txt
new_words_to_add = unknown_words - existing_new_dict_words
if new_words_to_add:
with file_lock:
with open('new_dict.txt', 'a', encoding='utf-8') as f:
for word in sorted(new_words_to_add):
f.write(word + '\n')
existing_new_dict_words.update(new_words_to_add)
return text
def synthesise(transformed_text, speed, steps, progress=gr.Progress()):
if transformed_text.strip() == "":
raise gr.Error("Ви повинні ввести текст")
if len(transformed_text) > 50000:
raise gr.Error("Текст повинен бути менше 50 000 символів")
print("*** saying ***")
print(transformed_text)
print("*** end ***")
return 24000, inference(transformed_text, progress, speed=speed, alpha=1.0, diffusion_steps=steps, embedding_scale=1.0)[0]
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Row():
text_input = gr.Textbox(label='Text:', lines=5, max_lines=10)
transformed_text_output = gr.Textbox(label='Transformed Text:', lines=5, max_lines=10, interactive=True)
with gr.Row():
apply_custom_dict_checkbox = gr.Checkbox(label='Замінити слова за словником', value=True)
add_pauses_checkbox = gr.Checkbox(label='Додати паузи', value=False)
with gr.Row():
speed_slider = gr.Slider(label='Швидкість:', maximum=1.3, minimum=0.7, value=1.0)
steps_slider = gr.Slider(label='Кількість кроків дифузії:', minimum=3, maximum=20, step=1, value=3)
with gr.Row():
transform_button = gr.Button('Transform Text')
generate_button = gr.Button('Згенерувати аудіо')
audio_output = gr.Audio(label="Audio:", autoplay=False, streaming=False, type="numpy")
def update_transformed_text(text, apply_custom_dict, add_pauses_flag):
transformed_text = transform_text(text, apply_custom_dict, add_pauses_flag)
return transformed_text
# Set up transformation on button click
transform_button.click(fn=update_transformed_text, inputs=[text_input, apply_custom_dict_checkbox, add_pauses_checkbox], outputs=transformed_text_output)
def generate_audio(transformed_text, speed, steps):
return synthesise(transformed_text, speed, steps)
generate_button.click(fn=generate_audio, inputs=[transformed_text_output, speed_slider, steps_slider], outputs=audio_output)
demo.launch(share=False, server_name="0.0.0.0") |