fexeak
commited on
Commit
·
7d026c2
1
Parent(s):
cb41d64
refactor: 替换模型为SmolLM2并简化代码结构
Browse files移除原有NSFW-Flash模型相关代码,改用更轻量的SmolLM2-135M模型
简化代码结构,仅保留基础模型加载和推理功能
- app.py +9 -164
- app.py.bak +165 -0
app.py
CHANGED
@@ -1,165 +1,10 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
model =
|
9 |
-
tokenizer =
|
10 |
-
|
11 |
-
|
12 |
-
def load_model():
|
13 |
-
"""Load the model and tokenizer"""
|
14 |
-
global model, tokenizer, model_loaded
|
15 |
-
try:
|
16 |
-
print("Loading model...")
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(
|
18 |
-
"UnfilteredAI/NSFW-Flash",
|
19 |
-
trust_remote_code=True,
|
20 |
-
torch_dtype=torch.bfloat16
|
21 |
-
).to("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
-
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
24 |
-
"UnfilteredAI/NSFW-Flash",
|
25 |
-
trust_remote_code=True
|
26 |
-
)
|
27 |
-
|
28 |
-
model_loaded = True
|
29 |
-
print("Model loaded successfully!")
|
30 |
-
except Exception as e:
|
31 |
-
print(f"Error loading model: {e}")
|
32 |
-
model_loaded = False
|
33 |
-
|
34 |
-
def generate_response(message, history, temperature, max_length, top_p):
|
35 |
-
"""Generate response from the model"""
|
36 |
-
global model, tokenizer, model_loaded
|
37 |
-
|
38 |
-
if not model_loaded:
|
39 |
-
return "模型尚未加载完成,请稍等..."
|
40 |
-
|
41 |
-
try:
|
42 |
-
# Build conversation history
|
43 |
-
chat = [
|
44 |
-
{"role": "system", "content": "You are NSFW-Flash, an AI assistant. Respond helpfully and appropriately."}
|
45 |
-
]
|
46 |
-
|
47 |
-
# Add conversation history
|
48 |
-
for user_msg, bot_msg in history:
|
49 |
-
chat.append({"role": "user", "content": user_msg})
|
50 |
-
if bot_msg:
|
51 |
-
chat.append({"role": "assistant", "content": bot_msg})
|
52 |
-
|
53 |
-
# Add current message
|
54 |
-
chat.append({"role": "user", "content": message})
|
55 |
-
|
56 |
-
# Apply chat template
|
57 |
-
chat_text = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
58 |
-
|
59 |
-
# Tokenize
|
60 |
-
inputs = tokenizer(chat_text, return_tensors="pt", return_attention_mask=False)
|
61 |
-
if torch.cuda.is_available():
|
62 |
-
inputs = inputs.to("cuda")
|
63 |
-
|
64 |
-
# Generate
|
65 |
-
with torch.no_grad():
|
66 |
-
generated = model.generate(
|
67 |
-
**inputs,
|
68 |
-
max_length=max_length,
|
69 |
-
temperature=temperature,
|
70 |
-
top_p=top_p,
|
71 |
-
do_sample=True,
|
72 |
-
use_cache=False,
|
73 |
-
eos_token_id=tokenizer.eos_token_id,
|
74 |
-
pad_token_id=tokenizer.eos_token_id
|
75 |
-
)
|
76 |
-
|
77 |
-
# Decode response
|
78 |
-
response = tokenizer.decode(generated[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
79 |
-
return response.strip()
|
80 |
-
|
81 |
-
except Exception as e:
|
82 |
-
return f"生成回复时出错: {str(e)}"
|
83 |
-
|
84 |
-
def chat_interface(message, history, temperature, max_length, top_p):
|
85 |
-
"""Chat interface for Gradio"""
|
86 |
-
response = generate_response(message, history, temperature, max_length, top_p)
|
87 |
-
history.append([message, response])
|
88 |
-
return "", history
|
89 |
-
|
90 |
-
# Load model in background
|
91 |
-
loading_thread = threading.Thread(target=load_model)
|
92 |
-
loading_thread.start()
|
93 |
-
|
94 |
-
# Create Gradio interface
|
95 |
-
with gr.Blocks(title="AI Chat Assistant") as demo:
|
96 |
-
gr.Markdown("# 🤖 AI Chat Assistant")
|
97 |
-
gr.Markdown("基于 NSFW-Flash 模型的聊天助手")
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
with gr.Column(scale=3):
|
101 |
-
chatbot = gr.Chatbot(
|
102 |
-
value=[],
|
103 |
-
height=500,
|
104 |
-
show_label=False
|
105 |
-
)
|
106 |
-
|
107 |
-
with gr.Row():
|
108 |
-
msg = gr.Textbox(
|
109 |
-
placeholder="输入您的消息...",
|
110 |
-
show_label=False,
|
111 |
-
scale=4
|
112 |
-
)
|
113 |
-
send_btn = gr.Button("发送", scale=1)
|
114 |
-
|
115 |
-
clear_btn = gr.Button("清空对话")
|
116 |
-
|
117 |
-
with gr.Column(scale=1):
|
118 |
-
gr.Markdown("### 参数设置")
|
119 |
-
temperature = gr.Slider(
|
120 |
-
minimum=0.1,
|
121 |
-
maximum=2.0,
|
122 |
-
value=0.7,
|
123 |
-
step=0.1,
|
124 |
-
label="Temperature"
|
125 |
-
)
|
126 |
-
max_length = gr.Slider(
|
127 |
-
minimum=100,
|
128 |
-
maximum=2000,
|
129 |
-
value=1000,
|
130 |
-
step=100,
|
131 |
-
label="最大长度"
|
132 |
-
)
|
133 |
-
top_p = gr.Slider(
|
134 |
-
minimum=0.1,
|
135 |
-
maximum=1.0,
|
136 |
-
value=0.95,
|
137 |
-
step=0.05,
|
138 |
-
label="Top-p"
|
139 |
-
)
|
140 |
-
|
141 |
-
# Event handlers
|
142 |
-
send_btn.click(
|
143 |
-
chat_interface,
|
144 |
-
inputs=[msg, chatbot, temperature, max_length, top_p],
|
145 |
-
outputs=[msg, chatbot]
|
146 |
-
)
|
147 |
-
|
148 |
-
msg.submit(
|
149 |
-
chat_interface,
|
150 |
-
inputs=[msg, chatbot, temperature, max_length, top_p],
|
151 |
-
outputs=[msg, chatbot]
|
152 |
-
)
|
153 |
-
|
154 |
-
clear_btn.click(
|
155 |
-
lambda: ([], ""),
|
156 |
-
outputs=[chatbot, msg]
|
157 |
-
)
|
158 |
-
|
159 |
-
if __name__ == "__main__":
|
160 |
-
demo.launch(
|
161 |
-
server_name="0.0.0.0",
|
162 |
-
server_port=7860,
|
163 |
-
share=True,
|
164 |
-
show_error=True
|
165 |
-
)
|
|
|
1 |
+
# pip install transformers
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
checkpoint = "HuggingFaceTB/SmolLM2-135M"
|
4 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
6 |
+
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
8 |
+
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
|
9 |
+
outputs = model.generate(inputs)
|
10 |
+
print(tokenizer.decode(outputs[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py.bak
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import threading
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Global variables for model and tokenizer
|
8 |
+
model = None
|
9 |
+
tokenizer = None
|
10 |
+
model_loaded = False
|
11 |
+
|
12 |
+
def load_model():
|
13 |
+
"""Load the model and tokenizer"""
|
14 |
+
global model, tokenizer, model_loaded
|
15 |
+
try:
|
16 |
+
print("Loading model...")
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
"UnfilteredAI/NSFW-Flash",
|
19 |
+
trust_remote_code=True,
|
20 |
+
torch_dtype=torch.bfloat16
|
21 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
24 |
+
"UnfilteredAI/NSFW-Flash",
|
25 |
+
trust_remote_code=True
|
26 |
+
)
|
27 |
+
|
28 |
+
model_loaded = True
|
29 |
+
print("Model loaded successfully!")
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error loading model: {e}")
|
32 |
+
model_loaded = False
|
33 |
+
|
34 |
+
def generate_response(message, history, temperature, max_length, top_p):
|
35 |
+
"""Generate response from the model"""
|
36 |
+
global model, tokenizer, model_loaded
|
37 |
+
|
38 |
+
if not model_loaded:
|
39 |
+
return "模型尚未加载完成,请稍等..."
|
40 |
+
|
41 |
+
try:
|
42 |
+
# Build conversation history
|
43 |
+
chat = [
|
44 |
+
{"role": "system", "content": "You are NSFW-Flash, an AI assistant. Respond helpfully and appropriately."}
|
45 |
+
]
|
46 |
+
|
47 |
+
# Add conversation history
|
48 |
+
for user_msg, bot_msg in history:
|
49 |
+
chat.append({"role": "user", "content": user_msg})
|
50 |
+
if bot_msg:
|
51 |
+
chat.append({"role": "assistant", "content": bot_msg})
|
52 |
+
|
53 |
+
# Add current message
|
54 |
+
chat.append({"role": "user", "content": message})
|
55 |
+
|
56 |
+
# Apply chat template
|
57 |
+
chat_text = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
58 |
+
|
59 |
+
# Tokenize
|
60 |
+
inputs = tokenizer(chat_text, return_tensors="pt", return_attention_mask=False)
|
61 |
+
if torch.cuda.is_available():
|
62 |
+
inputs = inputs.to("cuda")
|
63 |
+
|
64 |
+
# Generate
|
65 |
+
with torch.no_grad():
|
66 |
+
generated = model.generate(
|
67 |
+
**inputs,
|
68 |
+
max_length=max_length,
|
69 |
+
temperature=temperature,
|
70 |
+
top_p=top_p,
|
71 |
+
do_sample=True,
|
72 |
+
use_cache=False,
|
73 |
+
eos_token_id=tokenizer.eos_token_id,
|
74 |
+
pad_token_id=tokenizer.eos_token_id
|
75 |
+
)
|
76 |
+
|
77 |
+
# Decode response
|
78 |
+
response = tokenizer.decode(generated[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
79 |
+
return response.strip()
|
80 |
+
|
81 |
+
except Exception as e:
|
82 |
+
return f"生成回复时出错: {str(e)}"
|
83 |
+
|
84 |
+
def chat_interface(message, history, temperature, max_length, top_p):
|
85 |
+
"""Chat interface for Gradio"""
|
86 |
+
response = generate_response(message, history, temperature, max_length, top_p)
|
87 |
+
history.append([message, response])
|
88 |
+
return "", history
|
89 |
+
|
90 |
+
# Load model in background
|
91 |
+
loading_thread = threading.Thread(target=load_model)
|
92 |
+
loading_thread.start()
|
93 |
+
|
94 |
+
# Create Gradio interface
|
95 |
+
with gr.Blocks(title="AI Chat Assistant") as demo:
|
96 |
+
gr.Markdown("# 🤖 AI Chat Assistant")
|
97 |
+
gr.Markdown("基于 NSFW-Flash 模型的聊天助手")
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column(scale=3):
|
101 |
+
chatbot = gr.Chatbot(
|
102 |
+
value=[],
|
103 |
+
height=500,
|
104 |
+
show_label=False
|
105 |
+
)
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
msg = gr.Textbox(
|
109 |
+
placeholder="输入您的消息...",
|
110 |
+
show_label=False,
|
111 |
+
scale=4
|
112 |
+
)
|
113 |
+
send_btn = gr.Button("发送", scale=1)
|
114 |
+
|
115 |
+
clear_btn = gr.Button("清空对话")
|
116 |
+
|
117 |
+
with gr.Column(scale=1):
|
118 |
+
gr.Markdown("### 参数设置")
|
119 |
+
temperature = gr.Slider(
|
120 |
+
minimum=0.1,
|
121 |
+
maximum=2.0,
|
122 |
+
value=0.7,
|
123 |
+
step=0.1,
|
124 |
+
label="Temperature"
|
125 |
+
)
|
126 |
+
max_length = gr.Slider(
|
127 |
+
minimum=100,
|
128 |
+
maximum=2000,
|
129 |
+
value=1000,
|
130 |
+
step=100,
|
131 |
+
label="最大长度"
|
132 |
+
)
|
133 |
+
top_p = gr.Slider(
|
134 |
+
minimum=0.1,
|
135 |
+
maximum=1.0,
|
136 |
+
value=0.95,
|
137 |
+
step=0.05,
|
138 |
+
label="Top-p"
|
139 |
+
)
|
140 |
+
|
141 |
+
# Event handlers
|
142 |
+
send_btn.click(
|
143 |
+
chat_interface,
|
144 |
+
inputs=[msg, chatbot, temperature, max_length, top_p],
|
145 |
+
outputs=[msg, chatbot]
|
146 |
+
)
|
147 |
+
|
148 |
+
msg.submit(
|
149 |
+
chat_interface,
|
150 |
+
inputs=[msg, chatbot, temperature, max_length, top_p],
|
151 |
+
outputs=[msg, chatbot]
|
152 |
+
)
|
153 |
+
|
154 |
+
clear_btn.click(
|
155 |
+
lambda: ([], ""),
|
156 |
+
outputs=[chatbot, msg]
|
157 |
+
)
|
158 |
+
|
159 |
+
if __name__ == "__main__":
|
160 |
+
demo.launch(
|
161 |
+
server_name="0.0.0.0",
|
162 |
+
server_port=7860,
|
163 |
+
share=True,
|
164 |
+
show_error=True
|
165 |
+
)
|