fexeak
commited on
Commit
·
8cfcc01
1
Parent(s):
fc145ea
feat: 添加基于SmolLM2-135M的Gradio聊天界面
Browse files实现一个完整的聊天助手界面,包含以下功能:
- 后台线程加载模型
- 可调节生成参数(temperature, max_length, top_p)
- 聊天历史记录功能
- 错误处理和状态提示
app.py
CHANGED
@@ -1,10 +1,137 @@
|
|
1 |
-
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
checkpoint = "HuggingFaceTB/SmolLM2-135M"
|
4 |
-
device = "cuda"
|
5 |
-
|
6 |
-
|
7 |
-
model
|
8 |
-
|
9 |
-
|
10 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import threading
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Global variables for model and tokenizer
|
8 |
+
model = None
|
9 |
+
tokenizer = None
|
10 |
+
model_loaded = False
|
11 |
checkpoint = "HuggingFaceTB/SmolLM2-135M"
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
def load_model():
|
15 |
+
"""Load the model and tokenizer"""
|
16 |
+
global model, tokenizer, model_loaded
|
17 |
+
try:
|
18 |
+
print("Loading model...")
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
21 |
+
model_loaded = True
|
22 |
+
print("Model loaded successfully!")
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error loading model: {e}")
|
25 |
+
model_loaded = False
|
26 |
+
|
27 |
+
def generate_response(message, history, temperature, max_length, top_p):
|
28 |
+
"""Generate response from the model"""
|
29 |
+
global model, tokenizer, model_loaded
|
30 |
+
|
31 |
+
if not model_loaded:
|
32 |
+
return "模型尚未加载完成,请稍等..."
|
33 |
+
|
34 |
+
try:
|
35 |
+
# Tokenize input
|
36 |
+
inputs = tokenizer.encode(message, return_tensors="pt").to(device)
|
37 |
+
|
38 |
+
# Generate
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model.generate(
|
41 |
+
inputs,
|
42 |
+
max_length=max_length,
|
43 |
+
temperature=temperature,
|
44 |
+
top_p=top_p,
|
45 |
+
do_sample=True,
|
46 |
+
pad_token_id=tokenizer.eos_token_id
|
47 |
+
)
|
48 |
+
|
49 |
+
# Decode response
|
50 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
+
return response.strip()
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
return f"生成回复时出错: {str(e)}"
|
55 |
+
|
56 |
+
def chat_interface(message, history, temperature, max_length, top_p):
|
57 |
+
"""Chat interface for Gradio"""
|
58 |
+
response = generate_response(message, history, temperature, max_length, top_p)
|
59 |
+
history.append([message, response])
|
60 |
+
return "", history
|
61 |
+
|
62 |
+
# Load model in background
|
63 |
+
loading_thread = threading.Thread(target=load_model)
|
64 |
+
loading_thread.start()
|
65 |
+
|
66 |
+
# Create Gradio interface
|
67 |
+
with gr.Blocks(title="AI Chat Assistant") as demo:
|
68 |
+
gr.Markdown("# 🤖 AI Chat Assistant")
|
69 |
+
gr.Markdown("基于 SmolLM2-135M 模型的聊天助手")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column(scale=3):
|
73 |
+
chatbot = gr.Chatbot(
|
74 |
+
value=[],
|
75 |
+
height=500,
|
76 |
+
show_label=False
|
77 |
+
)
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
msg = gr.Textbox(
|
81 |
+
placeholder="输入您的消息...",
|
82 |
+
show_label=False,
|
83 |
+
scale=4
|
84 |
+
)
|
85 |
+
send_btn = gr.Button("发送", scale=1)
|
86 |
+
|
87 |
+
clear_btn = gr.Button("清空对话")
|
88 |
+
|
89 |
+
with gr.Column(scale=1):
|
90 |
+
gr.Markdown("### 参数设置")
|
91 |
+
temperature = gr.Slider(
|
92 |
+
minimum=0.1,
|
93 |
+
maximum=2.0,
|
94 |
+
value=0.7,
|
95 |
+
step=0.1,
|
96 |
+
label="Temperature"
|
97 |
+
)
|
98 |
+
max_length = gr.Slider(
|
99 |
+
minimum=100,
|
100 |
+
maximum=2000,
|
101 |
+
value=1000,
|
102 |
+
step=100,
|
103 |
+
label="最大长度"
|
104 |
+
)
|
105 |
+
top_p = gr.Slider(
|
106 |
+
minimum=0.1,
|
107 |
+
maximum=1.0,
|
108 |
+
value=0.95,
|
109 |
+
step=0.05,
|
110 |
+
label="Top-p"
|
111 |
+
)
|
112 |
+
|
113 |
+
# Event handlers
|
114 |
+
send_btn.click(
|
115 |
+
chat_interface,
|
116 |
+
inputs=[msg, chatbot, temperature, max_length, top_p],
|
117 |
+
outputs=[msg, chatbot]
|
118 |
+
)
|
119 |
+
|
120 |
+
msg.submit(
|
121 |
+
chat_interface,
|
122 |
+
inputs=[msg, chatbot, temperature, max_length, top_p],
|
123 |
+
outputs=[msg, chatbot]
|
124 |
+
)
|
125 |
+
|
126 |
+
clear_btn.click(
|
127 |
+
lambda: ([], ""),
|
128 |
+
outputs=[chatbot, msg]
|
129 |
+
)
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
demo.launch(
|
133 |
+
server_name="0.0.0.0",
|
134 |
+
server_port=7860,
|
135 |
+
share=True,
|
136 |
+
show_error=True
|
137 |
+
)
|