Spaces:
Sleeping
Sleeping
question promt added
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from PIL import Image
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
|
7 |
|
8 |
-
def process_inputs(audio, option):
|
9 |
# Process inputs and return results
|
10 |
if option == "Translate":
|
11 |
generated_text = generate_text_from_audio(audio), None
|
@@ -18,7 +18,7 @@ def process_inputs(audio, option):
|
|
18 |
return "", text_classification(generated_text)
|
19 |
elif option == "Ask a Question":
|
20 |
generated_text = generate_text_from_audio(audio)
|
21 |
-
return ask_ques_from_text(generated_text), None
|
22 |
|
23 |
def generate_text_from_audio(audio):
|
24 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -78,14 +78,14 @@ def text_classification(text):
|
|
78 |
return "classification_plot.png"
|
79 |
|
80 |
|
81 |
-
def ask_ques_from_text(text):
|
82 |
model_name = "deepset/roberta-base-squad2"
|
83 |
|
84 |
# Get predictions
|
85 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name, device=0)
|
86 |
|
87 |
QA_input = {
|
88 |
-
'question':
|
89 |
'context': text # Your context text from audio_text_result
|
90 |
}
|
91 |
|
@@ -98,9 +98,11 @@ demo = gr.Interface(
|
|
98 |
fn=process_inputs,
|
99 |
inputs=[
|
100 |
gr.Audio(label="Upload audio in .mp3 format", type="filepath"), # Audio input
|
101 |
-
gr.Dropdown(choices=["Translate", "Summarize", "text-classification", "Ask a Question"], label="Choose an Option")
|
|
|
102 |
],
|
103 |
outputs=[gr.Textbox(label="Result"), gr.Image(label="Classification Plot")],
|
104 |
)
|
105 |
|
|
|
106 |
demo.launch()
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
|
7 |
|
8 |
+
def process_inputs(audio, option, question=None):
|
9 |
# Process inputs and return results
|
10 |
if option == "Translate":
|
11 |
generated_text = generate_text_from_audio(audio), None
|
|
|
18 |
return "", text_classification(generated_text)
|
19 |
elif option == "Ask a Question":
|
20 |
generated_text = generate_text_from_audio(audio)
|
21 |
+
return ask_ques_from_text(generated_text, question), None
|
22 |
|
23 |
def generate_text_from_audio(audio):
|
24 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
78 |
return "classification_plot.png"
|
79 |
|
80 |
|
81 |
+
def ask_ques_from_text(text, ques):
|
82 |
model_name = "deepset/roberta-base-squad2"
|
83 |
|
84 |
# Get predictions
|
85 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name, device=0)
|
86 |
|
87 |
QA_input = {
|
88 |
+
'question': ques,
|
89 |
'context': text # Your context text from audio_text_result
|
90 |
}
|
91 |
|
|
|
98 |
fn=process_inputs,
|
99 |
inputs=[
|
100 |
gr.Audio(label="Upload audio in .mp3 format", type="filepath"), # Audio input
|
101 |
+
gr.Dropdown(choices=["Translate", "Summarize", "text-classification", "Ask a Question"], label="Choose an Option"),
|
102 |
+
gr.Textbox(label="Enter your question if you chose Ask a question in dropdown", placeholder="Enter your question here", visible=True)
|
103 |
],
|
104 |
outputs=[gr.Textbox(label="Result"), gr.Image(label="Classification Plot")],
|
105 |
)
|
106 |
|
107 |
+
|
108 |
demo.launch()
|