Spaces:
Sleeping
Sleeping
Features added
Browse files- .gitignore +3 -0
- app.py +106 -0
- classification_plot.png +0 -0
- requirements.txt +97 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# .gitignore
|
2 |
+
venv/
|
3 |
+
.venv/
|
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
4 |
+
from PIL import Image
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
|
8 |
+
def process_inputs(audio, option):
|
9 |
+
# Process inputs and return results
|
10 |
+
if option == "Translate":
|
11 |
+
generated_text = generate_text_from_audio(audio), None
|
12 |
+
return generated_text
|
13 |
+
elif option == "Summarize":
|
14 |
+
generated_text = generate_text_from_audio(audio)
|
15 |
+
return generate_summary_from_text(generated_text, minLength=50, maxLength=150), None
|
16 |
+
elif option == "text-classification":
|
17 |
+
generated_text = generate_text_from_audio(audio)
|
18 |
+
return "", text_classification(generated_text)
|
19 |
+
elif option == "Ask a Question":
|
20 |
+
generated_text = generate_text_from_audio(audio)
|
21 |
+
return ask_ques_from_text(generated_text), None
|
22 |
+
|
23 |
+
def generate_text_from_audio(audio):
|
24 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
26 |
+
model_id = "openai/whisper-small"
|
27 |
+
|
28 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
29 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
30 |
+
)
|
31 |
+
model.to(device)
|
32 |
+
|
33 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
34 |
+
|
35 |
+
# Load the audio using librosa and extract the audio data (not the sample rate)
|
36 |
+
audio_data = audio # audio_data is the NumPy array we need
|
37 |
+
|
38 |
+
pipe = pipeline(
|
39 |
+
"automatic-speech-recognition",
|
40 |
+
model=model,
|
41 |
+
tokenizer=processor.tokenizer,
|
42 |
+
feature_extractor=processor.feature_extractor,
|
43 |
+
torch_dtype=torch_dtype,
|
44 |
+
chunk_length_s=30,
|
45 |
+
batch_size=16, # batch size for inference - set based on your device
|
46 |
+
device=device,
|
47 |
+
)
|
48 |
+
|
49 |
+
audio_text_result = pipe(audio_data, generate_kwargs={"task": "translate", "forced_decoder_ids": [[1, None], [2, 50359]]})
|
50 |
+
return audio_text_result["text"]
|
51 |
+
|
52 |
+
def generate_summary_from_text(text, minLength, maxLength):
|
53 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
54 |
+
return summarizer(text, max_length=maxLength, min_length=minLength, do_sample=False)
|
55 |
+
|
56 |
+
def text_classification(text):
|
57 |
+
classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)
|
58 |
+
model_outputs = classifier([text])
|
59 |
+
|
60 |
+
# Extract the labels and scores from the model's output
|
61 |
+
labels = [output['label'] for output in model_outputs[0]]
|
62 |
+
scores = [output['score'] for output in model_outputs[0]]
|
63 |
+
sorted_data = sorted(zip(scores, labels), reverse=True)
|
64 |
+
|
65 |
+
# Extract top 5 emotions
|
66 |
+
top_5_scores, top_5_labels = zip(*sorted_data[:5])
|
67 |
+
|
68 |
+
# Plotting the Bar Chart
|
69 |
+
plt.figure(figsize=(12, 8))
|
70 |
+
plt.barh(top_5_labels, top_5_scores, color='skyblue')
|
71 |
+
plt.title('Top 5 Sentiment Scores for Emotions')
|
72 |
+
plt.xlabel('Score')
|
73 |
+
plt.ylabel('Emotion')
|
74 |
+
|
75 |
+
# Display the plot
|
76 |
+
plt.savefig("classification_plot.png")
|
77 |
+
plt.close()
|
78 |
+
return "classification_plot.png"
|
79 |
+
|
80 |
+
|
81 |
+
def ask_ques_from_text(text):
|
82 |
+
model_name = "deepset/roberta-base-squad2"
|
83 |
+
|
84 |
+
# Get predictions
|
85 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name, device=0)
|
86 |
+
|
87 |
+
QA_input = {
|
88 |
+
'question': 'who did not recognize?',
|
89 |
+
'context': text # Your context text from audio_text_result
|
90 |
+
}
|
91 |
+
|
92 |
+
res = nlp(QA_input)
|
93 |
+
print("Answer from pipeline:", res['answer'])
|
94 |
+
|
95 |
+
return res['answer']
|
96 |
+
|
97 |
+
demo = gr.Interface(
|
98 |
+
fn=process_inputs,
|
99 |
+
inputs=[
|
100 |
+
gr.Audio(label="Upload audio", type="filepath"), # Audio input
|
101 |
+
gr.Dropdown(choices=["Translate", "Summarize", "text-classification", "Ask a Question"], label="Choose an Option")
|
102 |
+
],
|
103 |
+
outputs=[gr.Textbox(label="Result"), gr.Image(label="Classification Plot")],
|
104 |
+
)
|
105 |
+
|
106 |
+
demo.launch()
|
classification_plot.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.1.1
|
2 |
+
aiofiles==23.2.1
|
3 |
+
aiohappyeyeballs==2.4.3
|
4 |
+
aiohttp==3.10.10
|
5 |
+
aiosignal==1.3.1
|
6 |
+
annotated-types==0.7.0
|
7 |
+
anyio==4.6.2.post1
|
8 |
+
attrs==24.2.0
|
9 |
+
audioread==3.0.1
|
10 |
+
certifi==2024.8.30
|
11 |
+
cffi==1.17.1
|
12 |
+
charset-normalizer==3.4.0
|
13 |
+
click==8.1.7
|
14 |
+
contourpy==1.3.0
|
15 |
+
cycler==0.12.1
|
16 |
+
datasets==3.1.0
|
17 |
+
decorator==5.1.1
|
18 |
+
dill==0.3.8
|
19 |
+
fastapi==0.115.4
|
20 |
+
ffmpy==0.4.0
|
21 |
+
filelock==3.16.1
|
22 |
+
fonttools==4.54.1
|
23 |
+
frozenlist==1.5.0
|
24 |
+
fsspec==2024.9.0
|
25 |
+
gradio==5.5.0
|
26 |
+
gradio_client==1.4.2
|
27 |
+
h11==0.14.0
|
28 |
+
httpcore==1.0.6
|
29 |
+
httpx==0.27.2
|
30 |
+
huggingface-hub==0.26.2
|
31 |
+
idna==3.10
|
32 |
+
Jinja2==3.1.4
|
33 |
+
joblib==1.4.2
|
34 |
+
kiwisolver==1.4.7
|
35 |
+
lazy_loader==0.4
|
36 |
+
librosa==0.10.2.post1
|
37 |
+
llvmlite==0.43.0
|
38 |
+
markdown-it-py==3.0.0
|
39 |
+
MarkupSafe==2.1.5
|
40 |
+
matplotlib==3.9.2
|
41 |
+
mdurl==0.1.2
|
42 |
+
mpmath==1.3.0
|
43 |
+
msgpack==1.1.0
|
44 |
+
multidict==6.1.0
|
45 |
+
multiprocess==0.70.16
|
46 |
+
networkx==3.4.2
|
47 |
+
numba==0.60.0
|
48 |
+
numpy==2.0.2
|
49 |
+
orjson==3.10.11
|
50 |
+
packaging==24.1
|
51 |
+
pandas==2.2.3
|
52 |
+
pillow==11.0.0
|
53 |
+
platformdirs==4.3.6
|
54 |
+
pooch==1.8.2
|
55 |
+
propcache==0.2.0
|
56 |
+
psutil==6.1.0
|
57 |
+
pyarrow==18.0.0
|
58 |
+
pycparser==2.22
|
59 |
+
pydantic==2.9.2
|
60 |
+
pydantic_core==2.23.4
|
61 |
+
pydub==0.25.1
|
62 |
+
Pygments==2.18.0
|
63 |
+
pyparsing==3.2.0
|
64 |
+
python-dateutil==2.9.0.post0
|
65 |
+
python-multipart==0.0.12
|
66 |
+
pytz==2024.2
|
67 |
+
PyYAML==6.0.2
|
68 |
+
regex==2024.11.6
|
69 |
+
requests==2.32.3
|
70 |
+
rich==13.9.4
|
71 |
+
ruff==0.7.2
|
72 |
+
safehttpx==0.1.1
|
73 |
+
safetensors==0.4.5
|
74 |
+
scikit-learn==1.5.2
|
75 |
+
scipy==1.14.1
|
76 |
+
semantic-version==2.10.0
|
77 |
+
shellingham==1.5.4
|
78 |
+
six==1.16.0
|
79 |
+
sniffio==1.3.1
|
80 |
+
soundfile==0.12.1
|
81 |
+
soxr==0.5.0.post1
|
82 |
+
starlette==0.41.2
|
83 |
+
sympy==1.13.1
|
84 |
+
threadpoolctl==3.5.0
|
85 |
+
tokenizers==0.20.3
|
86 |
+
tomlkit==0.12.0
|
87 |
+
torch==2.5.1
|
88 |
+
tqdm==4.67.0
|
89 |
+
transformers==4.46.2
|
90 |
+
typer==0.12.5
|
91 |
+
typing_extensions==4.12.2
|
92 |
+
tzdata==2024.2
|
93 |
+
urllib3==2.2.3
|
94 |
+
uvicorn==0.32.0
|
95 |
+
websockets==12.0
|
96 |
+
xxhash==3.5.0
|
97 |
+
yarl==1.17.1
|