File size: 13,624 Bytes
c705408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import numpy as np
import imageio
import torch
from matplotlib import cm
import torch.nn.functional as F
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
# import av
# import decord
import torchvision
from einops import rearrange
def read_video_from_path(path):
# try:
# reader = imageio.get_reader(path)
# except Exception as e:
# print("Error opening video file: ", e)
# return None
# frames = []
# for i, im in enumerate(reader):
# frames.append(np.array(im))
# return np.stack(frames)
# # read videe using decord
# video = decord.VideoReader(path)
# frames = video.get_batch(range(len(video)))
# frames = [frame.asnumpy() for frame in frames]
# return np.stack(frames)
# read video using torchvision
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='THWC')
vframes = vframes.numpy()
return vframes
def draw_circle(rgb, coord, radius, color=(255, 0, 0), visible=True):
# Create a draw object
draw = ImageDraw.Draw(rgb)
# Calculate the bounding box of the circle
left_up_point = (coord[0] - radius, coord[1] - radius)
right_down_point = (coord[0] + radius, coord[1] + radius)
# Draw the circle
draw.ellipse(
[left_up_point, right_down_point],
fill=tuple(color) if visible else None,
outline=tuple(color),
)
return rgb
def draw_line(rgb, coord_y, coord_x, color, linewidth):
draw = ImageDraw.Draw(rgb)
draw.line(
(coord_y[0], coord_y[1], coord_x[0], coord_x[1]),
fill=tuple(color),
width=linewidth,
)
return rgb
def add_weighted(rgb, alpha, original, beta, gamma):
return (rgb * alpha + original * beta + gamma).astype("uint8")
class Visualizer:
def __init__(
self,
save_dir: str = "./results",
grayscale: bool = False,
pad_value: int = 0,
fps: int = 10,
mode: str = "rainbow", # 'cool', 'optical_flow'
linewidth: int = 2,
show_first_frame: int = 10,
tracks_leave_trace: int = 0, # -1 for infinite
):
self.mode = mode
self.save_dir = save_dir
if mode == "rainbow":
self.color_map = cm.get_cmap("gist_rainbow")
elif mode == "cool":
self.color_map = cm.get_cmap(mode)
self.show_first_frame = show_first_frame
self.grayscale = grayscale
self.tracks_leave_trace = tracks_leave_trace
self.pad_value = pad_value
self.linewidth = linewidth
self.fps = fps
def visualize(
self,
video: torch.Tensor, # (B,T,C,H,W)
tracks: torch.Tensor, # (B,T,N,2)
visibility: torch.Tensor = None, # (B, T, N, 1) bool
gt_tracks: torch.Tensor = None, # (B,T,N,2)
segm_mask: torch.Tensor = None, # (B,1,H,W)
filename: str = "video",
writer=None, # tensorboard Summary Writer, used for visualization during training
step: int = 0,
query_frame: int = 0,
save_video: bool = True,
compensate_for_camera_motion: bool = False,
):
if compensate_for_camera_motion:
assert segm_mask is not None
if segm_mask is not None:
coords = tracks[0, query_frame].round().long()
segm_mask = segm_mask[0, query_frame][coords[:, 1], coords[:, 0]].long()
video = F.pad(
video,
(self.pad_value, self.pad_value, self.pad_value, self.pad_value),
"constant",
255,
)
tracks = tracks + self.pad_value
if self.grayscale:
transform = transforms.Grayscale()
video = transform(video)
video = video.repeat(1, 1, 3, 1, 1)
res_video = self.draw_tracks_on_video(
video=video,
tracks=tracks,
visibility=visibility,
segm_mask=segm_mask,
gt_tracks=gt_tracks,
query_frame=query_frame,
compensate_for_camera_motion=compensate_for_camera_motion,
)
if save_video:
self.save_video(res_video, filename=filename, writer=writer, step=step)
return res_video
def save_video(self, video, filename, writer=None, step=0):
if writer is not None:
writer.add_video(
filename,
video.to(torch.uint8),
global_step=step,
fps=self.fps,
)
else:
os.makedirs(self.save_dir, exist_ok=True)
# Prepare the video file path
save_path = os.path.join(self.save_dir, f"{filename}.mp4")
# save video using torchvision
assert video.shape[0] == 1
video = rearrange(video[0], 'T C H W -> T H W C')
torchvision.io.write_video(save_path, video, fps=self.fps)
# wide_list = list(video.unbind(1))
# wide_list = [wide[0].permute(1, 2, 0).cpu().numpy() for wide in wide_list]
# # Create a writer object
# video_writer = imageio.get_writer(save_path, fps=self.fps)
# # Write frames to the video file
# for frame in wide_list[2:-1]:
# video_writer.append_data(frame)
# video_writer.close()
# # pyav
# container = av.open(save_path, mode="w")
# stream = container.add_stream("h264", rate=self.fps)
# for frame in wide_list[2:-1]:
# frame = Image.fromarray(frame)
# frame = np.array(frame)
# frame = av.VideoFrame.from_ndarray(frame, format="rgb24")
# for packet in stream.encode(frame):
# container.mux(packet)
print(f"Video saved to {save_path}")
def draw_tracks_on_video(
self,
video: torch.Tensor,
tracks: torch.Tensor,
visibility: torch.Tensor = None,
segm_mask: torch.Tensor = None,
gt_tracks=None,
query_frame: int = 0,
compensate_for_camera_motion=False,
):
B, T, C, H, W = video.shape
_, _, N, D = tracks.shape
assert D == 2
assert C == 3
video = video[0].permute(0, 2, 3, 1).byte().detach().cpu().numpy() # S, H, W, C
tracks = tracks[0].long().detach().cpu().numpy() # S, N, 2
if gt_tracks is not None:
gt_tracks = gt_tracks[0].detach().cpu().numpy()
res_video = []
# process input video
for rgb in video:
res_video.append(rgb.copy())
vector_colors = np.zeros((T, N, 3))
# define vector colors
if self.mode == "optical_flow":
import flow_vis
vector_colors = flow_vis.flow_to_color(tracks - tracks[query_frame][None])
elif segm_mask is None:
if self.mode == "rainbow":
y_min, y_max = (
tracks[query_frame, :, 1].min(),
tracks[query_frame, :, 1].max(),
)
norm = plt.Normalize(y_min, y_max)
for n in range(N):
color = self.color_map(norm(tracks[query_frame, n, 1]))
color = np.array(color[:3])[None] * 255
vector_colors[:, n] = np.repeat(color, T, axis=0)
else:
# color changes with time
for t in range(T):
color = np.array(self.color_map(t / T)[:3])[None] * 255
vector_colors[t] = np.repeat(color, N, axis=0)
else:
if self.mode == "rainbow":
vector_colors[:, segm_mask <= 0, :] = 255
y_min, y_max = (
tracks[0, segm_mask > 0, 1].min(),
tracks[0, segm_mask > 0, 1].max(),
)
norm = plt.Normalize(y_min, y_max)
for n in range(N):
if segm_mask[n] > 0:
color = self.color_map(norm(tracks[0, n, 1]))
color = np.array(color[:3])[None] * 255
vector_colors[:, n] = np.repeat(color, T, axis=0)
else:
# color changes with segm class
segm_mask = segm_mask.cpu()
color = np.zeros((segm_mask.shape[0], 3), dtype=np.float32)
color[segm_mask > 0] = np.array(self.color_map(1.0)[:3]) * 255.0
color[segm_mask <= 0] = np.array(self.color_map(0.0)[:3]) * 255.0
vector_colors = np.repeat(color[None], T, axis=0)
# draw tracks
if self.tracks_leave_trace != 0:
for t in range(query_frame + 1, T):
first_ind = (
max(0, t - self.tracks_leave_trace) if self.tracks_leave_trace >= 0 else 0
)
curr_tracks = tracks[first_ind : t + 1]
curr_colors = vector_colors[first_ind : t + 1]
if compensate_for_camera_motion:
diff = (
tracks[first_ind : t + 1, segm_mask <= 0]
- tracks[t : t + 1, segm_mask <= 0]
).mean(1)[:, None]
curr_tracks = curr_tracks - diff
curr_tracks = curr_tracks[:, segm_mask > 0]
curr_colors = curr_colors[:, segm_mask > 0]
res_video[t] = self._draw_pred_tracks(
res_video[t],
curr_tracks,
curr_colors,
)
if gt_tracks is not None:
res_video[t] = self._draw_gt_tracks(res_video[t], gt_tracks[first_ind : t + 1])
# draw points
for t in range(query_frame, T):
img = Image.fromarray(np.uint8(res_video[t]))
for i in range(N):
coord = (tracks[t, i, 0], tracks[t, i, 1])
visibile = True
if visibility is not None:
visibile = visibility[0, t, i]
if coord[0] != 0 and coord[1] != 0:
if not compensate_for_camera_motion or (
compensate_for_camera_motion and segm_mask[i] > 0
):
img = draw_circle(
img,
coord=coord,
radius=int(self.linewidth * 2),
color=vector_colors[t, i].astype(int),
visible=visibile,
)
res_video[t] = np.array(img)
# construct the final rgb sequence
if self.show_first_frame > 0:
res_video = [res_video[0]] * self.show_first_frame + res_video[1:]
return torch.from_numpy(np.stack(res_video)).permute(0, 3, 1, 2)[None].byte()
def _draw_pred_tracks(
self,
rgb: np.ndarray, # H x W x 3
tracks: np.ndarray, # T x 2
vector_colors: np.ndarray,
alpha: float = 0.5,
):
T, N, _ = tracks.shape
rgb = Image.fromarray(np.uint8(rgb))
for s in range(T - 1):
vector_color = vector_colors[s]
original = rgb.copy()
alpha = (s / T) ** 2
for i in range(N):
coord_y = (int(tracks[s, i, 0]), int(tracks[s, i, 1]))
coord_x = (int(tracks[s + 1, i, 0]), int(tracks[s + 1, i, 1]))
if coord_y[0] != 0 and coord_y[1] != 0:
rgb = draw_line(
rgb,
coord_y,
coord_x,
vector_color[i].astype(int),
self.linewidth,
)
if self.tracks_leave_trace > 0:
rgb = Image.fromarray(
np.uint8(add_weighted(np.array(rgb), alpha, np.array(original), 1 - alpha, 0))
)
rgb = np.array(rgb)
return rgb
def _draw_gt_tracks(
self,
rgb: np.ndarray, # H x W x 3,
gt_tracks: np.ndarray, # T x 2
):
T, N, _ = gt_tracks.shape
color = np.array((211, 0, 0))
rgb = Image.fromarray(np.uint8(rgb))
for t in range(T):
for i in range(N):
gt_tracks = gt_tracks[t][i]
# draw a red cross
if gt_tracks[0] > 0 and gt_tracks[1] > 0:
length = self.linewidth * 3
coord_y = (int(gt_tracks[0]) + length, int(gt_tracks[1]) + length)
coord_x = (int(gt_tracks[0]) - length, int(gt_tracks[1]) - length)
rgb = draw_line(
rgb,
coord_y,
coord_x,
color,
self.linewidth,
)
coord_y = (int(gt_tracks[0]) - length, int(gt_tracks[1]) + length)
coord_x = (int(gt_tracks[0]) + length, int(gt_tracks[1]) - length)
rgb = draw_line(
rgb,
coord_y,
coord_x,
color,
self.linewidth,
)
rgb = np.array(rgb)
return rgb
|