Spaces:
Running
on
L40S
Running
on
L40S
import sys | |
from pyparsing import col | |
sys.path.insert(0,".") | |
import argparse | |
from packaging import version | |
import glob | |
import os | |
from LightGlue.lightglue import LightGlue, SuperPoint, DISK, SIFT, ALIKED, DoGHardNet | |
from LightGlue.lightglue.utils import load_image, rbd | |
from cotracker.predictor import CoTrackerPredictor, sample_trajectories, generate_gassian_heatmap, sample_trajectories_with_ref | |
import torch | |
from diffusers.utils.import_utils import is_xformers_available | |
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel | |
from pipelines.AniDoc import AniDocPipeline | |
from models_diffusers.controlnet_svd import ControlNetSVDModel | |
from diffusers.utils import load_image, export_to_video, export_to_gif | |
import time | |
from lineart_extractor.annotator.lineart import LineartDetector | |
import numpy as np | |
from PIL import Image | |
from utils import load_images_from_folder,export_gif_with_ref,export_gif_side_by_side,extract_frames_from_video,safe_round,select_multiple_points,generate_point_map,generate_point_map_frames,export_gif_side_by_side_complete,export_gif_side_by_side_complete_ablation | |
import random | |
import torchvision.transforms as T | |
from LightGlue.lightglue import viz2d | |
import matplotlib.pyplot as plt | |
from cotracker.utils.visualizer import Visualizer, read_video_from_path | |
from torchvision.transforms import PILToTensor | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--pretrained_model_name_or_path", type=str, default="pretrained_weights/stable-video-diffusion-img2vid-xt", help="Path to the input image.") | |
parser.add_argument( | |
"--pretrained_unet", type=str, help="Path to the input image.", | |
default="pretrained_weights/anidoc" | |
) | |
parser.add_argument( | |
"--controlnet_model_name_or_path", type=str, help="Path to the input image.", | |
default="pretrained_weights/anidoc/controlnet" | |
) | |
parser.add_argument("--output_dir", type=str, default=None, help="Path to the output video.") | |
parser.add_argument("--seed", type=int, default=42, help="random seed.") | |
parser.add_argument("--noise_aug", type=float, default=0.02) | |
parser.add_argument("--num_frames", type=int, default=14) | |
parser.add_argument("--width", type=int, default=512) | |
parser.add_argument("--height", type=int, default=320) | |
parser.add_argument("--all_sketch",action="store_true",help="all_sketch") | |
parser.add_argument("--not_quant_sketch",action="store_true",help="not_quant_sketch") | |
parser.add_argument("--repeat_sketch",action="store_true",help="not_quant_sketch") | |
parser.add_argument("--matching",action="store_true",help="add keypoint matching") | |
parser.add_argument("--tracking",action="store_true",help="tracking keypoint") | |
parser.add_argument("--repeat_matching",action="store_true",help="not tracking, but just simply repeat") | |
parser.add_argument("--tracker_point_init", type=str, default='gaussion', choices=['dift', 'gaussion', 'both'], help="Regular grid size") | |
parser.add_argument( | |
"--tracker_shift_grid", | |
type=int, default=0, choices=[0, 1], | |
help="shift the grid for the tracker") | |
parser.add_argument("--tracker_grid_size", type=int, default=8, help="Regular grid size") | |
parser.add_argument( | |
"--tracker_grid_query_frame", | |
type=int, | |
default=0, | |
help="Compute dense and grid tracks starting from this frame", | |
) | |
parser.add_argument( | |
"--tracker_backward_tracking", | |
action="store_true", | |
help="Compute tracks in both directions, not only forward", | |
) | |
parser.add_argument("--control_image", type=str, default=None, help="Path to the output video.") | |
parser.add_argument("--ref_image", type=str, default=None, help="Path to the output video.") | |
parser.add_argument("--max_points", type=int, default=10) | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = get_args() | |
dtype = torch.float16 | |
unet = UNetSpatioTemporalConditionModel.from_pretrained( | |
args.pretrained_unet, | |
subfolder="unet", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
custom_resume=True, | |
) | |
unet.to("cuda",dtype) | |
if args.controlnet_model_name_or_path: | |
controlnet = ControlNetSVDModel.from_pretrained( | |
args.controlnet_model_name_or_path, | |
) | |
else: | |
controlnet = ControlNetSVDModel.from_unet( | |
unet, | |
conditioning_channels=8 | |
) | |
controlnet.to("cuda",dtype) | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError( | |
"xformers is not available. Make sure it is installed correctly") | |
pipe = AniDocPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=unet, | |
controlnet=controlnet, | |
low_cpu_mem_usage=False, | |
torch_dtype=torch.float16, variant="fp16" | |
) | |
pipe.to("cuda") | |
device = "cuda" | |
detector = LineartDetector(device) | |
extractor = SuperPoint(max_num_keypoints=2000).eval().to(device) # load the extractor | |
matcher = LightGlue(features='superpoint').eval().to(device) # load the matcher | |
tracker = CoTrackerPredictor( | |
checkpoint="pretrained_weights/cotracker2.pth", | |
shift_grid=args.tracker_shift_grid, | |
) | |
tracker.requires_grad_(False) | |
tracker.to(device, dtype=torch.float32) | |
width, height = args.width, args.height | |
# image = load_image('dalle3_cat.jpg') | |
if args.output_dir is None: | |
args.output_dir = "results" | |
os.makedirs(args.output_dir, exist_ok=True) | |
image_folder_list=[ | |
'data_test/sample1.mp4', | |
] | |
ref_image_list=[ | |
"data_test/sample1.png", | |
] | |
if args.ref_image is not None and args.control_image is not None: | |
ref_image_list=[args.ref_image] | |
image_folder_list=[args.control_image] | |
for val_id ,each_sample in enumerate(image_folder_list): | |
if os.path.isdir(each_sample): | |
control_images=load_images_from_folder(each_sample) | |
elif each_sample.endswith(".mp4"): | |
control_images = extract_frames_from_video(each_sample) | |
ref_image=load_image(ref_image_list[val_id]).resize((width, height)) | |
#resize: | |
for j, each in enumerate(control_images): | |
control_images[j]=control_images[j].resize((width, height)) | |
# load image from folder | |
if args.all_sketch: | |
controlnet_image=[] | |
for k in range(len(control_images)): | |
sketch=control_images[k] | |
sketch = np.array(sketch) | |
sketch=detector(sketch,coarse=False) | |
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2) | |
if args.not_quant_sketch: | |
pass | |
else: | |
sketch= (sketch > 200).astype(np.uint8)*255 | |
sketch = Image.fromarray(sketch).resize((width, height)) | |
controlnet_image.append(sketch) | |
controlnet_sketch_condition = [T.ToTensor()(img).unsqueeze(0) for img in controlnet_image] | |
controlnet_sketch_condition = torch.cat(controlnet_sketch_condition, dim=0).unsqueeze(0).to(device, dtype=torch.float16) | |
controlnet_sketch_condition = (controlnet_sketch_condition - 0.5) / 0.5 #(1,14,3,h,w) | |
# matching condition | |
with torch.no_grad(): | |
ref_img_value = T.ToTensor()(ref_image).to(device, dtype=torch.float16) #(0,1) | |
ref_img_value = ref_img_value.to(torch.float32) | |
current_img= T.ToTensor()(controlnet_image[0]).to(device, dtype=torch.float16) #(0,1) | |
current_img = current_img.to(torch.float32) | |
feats0 = extractor.extract(ref_img_value) | |
feats1 = extractor.extract(current_img) | |
matches01 = matcher({'image0': feats0, 'image1': feats1}) | |
feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]] | |
matches = matches01['matches'] | |
points0 = feats0['keypoints'][matches[..., 0]] | |
points1 = feats1['keypoints'][matches[..., 1]] | |
points0 = points0.cpu().numpy() | |
# points0_org=points0.copy() | |
points1 = points1.cpu().numpy() | |
points0 = safe_round(points0, current_img.shape) | |
points1 = safe_round(points1, current_img.shape) | |
num_points = min(50, points0.shape[0]) | |
points0,points1 = select_multiple_points(points0, points1, num_points) | |
mask1, mask2 = generate_point_map(size=current_img.shape, coords0=points0, coords1=points1) | |
# import ipdb;ipdb.set_trace() | |
point_map1=torch.from_numpy(mask1) | |
point_map2=torch.from_numpy(mask2) | |
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16) | |
point_map2 = point_map2.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16) | |
point_map=torch.cat([point_map1,point_map2],dim=2) | |
conditional_pixel_values=ref_img_value.unsqueeze(0).unsqueeze(0) | |
conditional_pixel_values = (conditional_pixel_values - 0.5) / 0.5 | |
point_map_with_ref= torch.cat([point_map,conditional_pixel_values],dim=2) | |
original_shape = list(point_map_with_ref.shape) | |
new_shape = original_shape.copy() | |
new_shape[1] = args.num_frames-1 | |
if args.repeat_matching: | |
matching_controlnet_image=point_map_with_ref.repeat(1,args.num_frames,1,1,1) | |
controlnet_condition=torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2) | |
elif args.tracking: | |
with torch.no_grad(): | |
video_for_tracker = (controlnet_sketch_condition * 0.5 + 0.5) * 255. | |
queries = np.insert(points1,0,0,axis=1) | |
queries =torch.from_numpy(queries).to(device,torch.float).unsqueeze(0) | |
if queries.shape[1]==0: | |
pred_tracks_sampled=None | |
points0_sampled = None | |
else: | |
pred_tracks, pred_visibility = tracker( | |
video_for_tracker.to(dtype=torch.float32), | |
queries=queries, | |
grid_size=args.tracker_grid_size, # 8 | |
grid_query_frame=args.tracker_grid_query_frame, # 0 | |
backward_tracking=args.tracker_backward_tracking, # False | |
# segm_mask=segm_mask, | |
) | |
pred_tracks_sampled, pred_visibility_sampled,points0_sampled = sample_trajectories_with_ref( | |
pred_tracks.cpu(), pred_visibility.cpu(), torch.from_numpy(points0).unsqueeze(0).cpu(), | |
max_points=args.max_points, | |
motion_threshold=1, | |
vis_threshold=3, | |
) | |
if pred_tracks_sampled is None: | |
mask1 = np.zeros((args.height, args.width), dtype=np.uint8) | |
mask2 = np.zeros((args.num_frames,args.height, args.width), dtype=np.uint8) | |
else: | |
pred_tracks_sampled = pred_tracks_sampled.squeeze(0).cpu().numpy() | |
pred_visibility_sampled =pred_visibility_sampled.squeeze(0).cpu().numpy() | |
points0_sampled =points0_sampled.squeeze(0).cpu().numpy() | |
for frame_id in range(args.num_frames): | |
pred_tracks_sampled[frame_id] = safe_round(pred_tracks_sampled[frame_id],current_img.shape) | |
points0_sampled = safe_round(points0_sampled,current_img.shape) | |
mask1, mask2 = generate_point_map_frames(size=current_img.shape, coords0=points0_sampled,coords1=pred_tracks_sampled,visibility=pred_visibility_sampled) | |
point_map1=torch.from_numpy(mask1) | |
point_map2=torch.from_numpy(mask2) | |
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).repeat(1,args.num_frames,1,1,1).to(device, dtype=torch.float16) | |
point_map2 = point_map2.unsqueeze(0).unsqueeze(2).to(device, dtype=torch.float16) | |
point_map=torch.cat([point_map1,point_map2],dim=2) | |
conditional_pixel_values_repeat=conditional_pixel_values.repeat(1,14,1,1,1) | |
point_map_with_ref= torch.cat([point_map,conditional_pixel_values_repeat],dim=2) | |
controlnet_condition= torch.cat([controlnet_sketch_condition, point_map_with_ref], dim=2) | |
else: | |
zero_tensor = torch.zeros(new_shape).to(device, dtype=torch.float16) | |
matching_controlnet_image=torch.cat((point_map_with_ref,zero_tensor),dim=1) | |
controlnet_condition = torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2) | |
ref_base_name=os.path.splitext(os.path.basename(ref_image_list[val_id]))[0] | |
sketch_base_name=os.path.splitext(os.path.basename(each_sample))[0] | |
supp_dir=os.path.join(args.output_dir,ref_base_name+"_"+sketch_base_name) | |
os.makedirs(supp_dir, exist_ok=True) | |
elif args.repeat_sketch: | |
controlnet_image=[] | |
for i_2 in range(int(len(control_images)/2)): | |
sketch=control_images[0] | |
sketch = np.array(sketch) | |
sketch=detector(sketch,coarse=False) | |
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2) | |
if args.not_quant_sketch: | |
pass | |
else: | |
sketch= (sketch > 200).astype(np.uint8)*255 | |
sketch = Image.fromarray(sketch) | |
controlnet_image.append(sketch) | |
for i_3 in range(int(len(control_images)/2)): | |
sketch=control_images[-1] | |
sketch = np.array(sketch) | |
sketch=detector(sketch,coarse=False) | |
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2) | |
if args.not_quant_sketch: | |
pass | |
else: | |
sketch= (sketch > 200).astype(np.uint8)*255 | |
sketch = Image.fromarray(sketch) | |
controlnet_image.append(sketch) | |
generator = torch.manual_seed(args.seed) | |
with torch.inference_mode(): | |
video_frames = pipe( | |
ref_image, | |
controlnet_condition, | |
height=args.height, | |
width=args.width, | |
num_frames=14, | |
decode_chunk_size=8, | |
motion_bucket_id=127, | |
fps=7, | |
noise_aug_strength=0.02, | |
generator=generator, | |
).frames[0] | |
out_file = supp_dir+'.mp4' | |
if args.all_sketch: | |
export_gif_side_by_side_complete_ablation(ref_image,controlnet_image,video_frames,out_file.replace('.mp4','.gif'),supp_dir,6) | |
elif args.repeat_sketch: | |
export_gif_with_ref(control_images[0],video_frames,controlnet_image[-1],controlnet_image[0],out_file.replace('.mp4','.gif'),6) | |