|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from typing import Tuple |
|
|
|
from cotracker.models.core.cotracker.cotracker import CoTracker2 |
|
from cotracker.models.core.model_utils import get_points_on_a_grid |
|
|
|
|
|
class EvaluationPredictor(torch.nn.Module): |
|
def __init__( |
|
self, |
|
cotracker_model: CoTracker2, |
|
interp_shape: Tuple[int, int] = (384, 512), |
|
grid_size: int = 5, |
|
local_grid_size: int = 8, |
|
single_point: bool = True, |
|
n_iters: int = 6, |
|
) -> None: |
|
super(EvaluationPredictor, self).__init__() |
|
self.grid_size = grid_size |
|
self.local_grid_size = local_grid_size |
|
self.single_point = single_point |
|
self.interp_shape = interp_shape |
|
self.n_iters = n_iters |
|
|
|
self.model = cotracker_model |
|
self.model.eval() |
|
|
|
def forward(self, video, queries): |
|
queries = queries.clone() |
|
B, T, C, H, W = video.shape |
|
B, N, D = queries.shape |
|
|
|
assert D == 3 |
|
|
|
video = video.reshape(B * T, C, H, W) |
|
video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True) |
|
video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) |
|
|
|
device = video.device |
|
|
|
queries[:, :, 1] *= (self.interp_shape[1] - 1) / (W - 1) |
|
queries[:, :, 2] *= (self.interp_shape[0] - 1) / (H - 1) |
|
|
|
if self.single_point: |
|
traj_e = torch.zeros((B, T, N, 2), device=device) |
|
vis_e = torch.zeros((B, T, N), device=device) |
|
for pind in range((N)): |
|
query = queries[:, pind : pind + 1] |
|
|
|
t = query[0, 0, 0].long() |
|
|
|
traj_e_pind, vis_e_pind = self._process_one_point(video, query) |
|
traj_e[:, t:, pind : pind + 1] = traj_e_pind[:, :, :1] |
|
vis_e[:, t:, pind : pind + 1] = vis_e_pind[:, :, :1] |
|
else: |
|
if self.grid_size > 0: |
|
xy = get_points_on_a_grid(self.grid_size, video.shape[3:]) |
|
xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) |
|
queries = torch.cat([queries, xy], dim=1) |
|
|
|
traj_e, vis_e, __ = self.model( |
|
video=video, |
|
queries=queries, |
|
iters=self.n_iters, |
|
) |
|
|
|
traj_e[:, :, :, 0] *= (W - 1) / float(self.interp_shape[1] - 1) |
|
traj_e[:, :, :, 1] *= (H - 1) / float(self.interp_shape[0] - 1) |
|
return traj_e, vis_e |
|
|
|
def _process_one_point(self, video, query): |
|
t = query[0, 0, 0].long() |
|
|
|
device = query.device |
|
if self.local_grid_size > 0: |
|
xy_target = get_points_on_a_grid( |
|
self.local_grid_size, |
|
(50, 50), |
|
[query[0, 0, 2].item(), query[0, 0, 1].item()], |
|
) |
|
|
|
xy_target = torch.cat([torch.zeros_like(xy_target[:, :, :1]), xy_target], dim=2).to( |
|
device |
|
) |
|
query = torch.cat([query, xy_target], dim=1) |
|
|
|
if self.grid_size > 0: |
|
xy = get_points_on_a_grid(self.grid_size, video.shape[3:]) |
|
xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) |
|
query = torch.cat([query, xy], dim=1) |
|
|
|
query[0, 0, 0] = 0 |
|
traj_e_pind, vis_e_pind, __ = self.model( |
|
video=video[:, t:], queries=query, iters=self.n_iters |
|
) |
|
|
|
return traj_e_pind, vis_e_pind |
|
|