AniDoc / cotracker /predictor.py
fffiloni's picture
Migrated from GitHub
c705408 verified
raw
history blame
18.3 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
import numpy as np
import cv2
import torch
import torch.nn.functional as F
from cotracker.models.core.model_utils import smart_cat, get_points_on_a_grid
from cotracker.models.build_cotracker import build_cotracker
def gen_gaussian_heatmap(imgSize=200):
circle_img = np.zeros((imgSize, imgSize), np.float32)
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
# Guass Map
for i in range(imgSize):
for j in range(imgSize):
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
# isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
return isotropicGrayscaleImage
def draw_heatmap(img, center_coordinate, heatmap_template, side, width, height):
x1 = max(center_coordinate[0] - side, 1)
x2 = min(center_coordinate[0] + side, width - 1)
y1 = max(center_coordinate[1] - side, 1)
y2 = min(center_coordinate[1] + side, height - 1)
x1, x2, y1, y2 = int(x1), int(x2), int(y1), int(y2)
if (x2 - x1) < 1 or (y2 - y1) < 1:
print(center_coordinate, "x1, x2, y1, y2", x1, x2, y1, y2)
return img
need_map = cv2.resize(heatmap_template, (x2-x1, y2-y1))
img[y1:y2,x1:x2] = need_map
return img
def generate_gassian_heatmap(pred_tracks, pred_visibility=None, image_size=None, side=20):
width, height = image_size
num_frames, num_points = pred_tracks.shape[:2]
point_index_list = [point_idx for point_idx in range(num_points)]
heatmap_template = gen_gaussian_heatmap()
image_list = []
for frame_idx in range(num_frames):
img = np.zeros((height, width), np.float32)
for point_idx in point_index_list:
px, py = pred_tracks[frame_idx, point_idx]
if px < 0 or py < 0 or px >= width or py >= height:
continue
if pred_visibility is not None:
if (not pred_visibility[frame_idx, point_idx]):
continue
img = draw_heatmap(img, (px, py), heatmap_template, side, width, height)
img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_GRAY2RGB)
img = torch.from_numpy(img).permute(2, 0, 1).contiguous()
image_list.append(img)
video_gaussion_map = torch.stack(image_list, dim=0)
return video_gaussion_map
# TODO: need further check and investigation
def sample_trajectories(
pred_tracks, pred_visibility,
max_points=10,
motion_threshold=1,
vis_threshold=5,
):
# pred_tracks: (b, f, num_points, 2)
# pred_visibility: (b, f, num_points)
batch_size, num_frames, num_points = pred_visibility.shape
# 1. Remove points with low visibility
mask = pred_visibility.sum(dim=1) > vis_threshold
mask = mask.unsqueeze(1).repeat(1, num_frames, 1)
pred_tracks = pred_tracks[mask].view(batch_size, num_frames, -1, 2)
pred_visibility = pred_visibility[mask].view(batch_size, num_frames, -1)
# 2. Thresholding: remove points with too small motions
# compute the motion of each point
diff = pred_tracks[:, 1:] - pred_tracks[:, :-1]
# (b, f-1, num_points), sqrt(x^2 + y^2)
motion = torch.norm(diff, dim=-1)
# (b, num_points), mean motion for each point
motion = torch.mean(motion, dim=1)
# apply threshold
mask = motion > motion_threshold # (b, num_points)
assert mask.shape[0] == 1
num_keeped = mask.sum()
if num_keeped < max_points:
indices = torch.argsort(motion, dim=-1, descending=True)[:, :max_points] # (bs, max_points)
mask = torch.zeros_like(mask) # (bs, num_points)
# set mask to 1 for the top max_points
mask[0, indices] = 1
num_keeped = mask.sum() # note sometimes mask.sum() < max_points
motion = motion[mask].view(batch_size, num_keeped)
# keep shape
mask = mask.unsqueeze(1).repeat(1, num_frames, 1)
pred_tracks = pred_tracks[mask].view(batch_size, num_frames, num_keeped, 2)
pred_visibility = pred_visibility[mask].view(batch_size, num_frames, num_keeped)
# 3. Sampling with larger prob for large motions
num_points = min(max_points, num_keeped)
if num_points == 0:
warnings.warn("No points left after filtering")
return None, None
prob = motion / motion.max()
prob = prob / prob.sum()
sampled_indices = torch.multinomial(prob, num_points, replacement=False)
sampled_indices = sampled_indices.squeeze(0) # (num_points, )
pred_tracks_sampled = pred_tracks[:, :, sampled_indices]
pred_visibility_sampled = pred_visibility[:, :, sampled_indices]
return pred_tracks_sampled, pred_visibility_sampled
def sample_trajectories_with_ref(
pred_tracks, pred_visibility, coords0,
max_points=10,
motion_threshold=1,
vis_threshold=5,
):
batch_size, num_frames, num_points = pred_visibility.shape
visibility_sum = pred_visibility.sum(dim=1)
vis_mask = visibility_sum > vis_threshold # (batch_size, num_points)
pred_tracks = pred_tracks * vis_mask.unsqueeze(1).unsqueeze(-1) # (batch_size, num_frames, num_points, 2)
pred_visibility = pred_visibility * vis_mask.unsqueeze(1)
indices = vis_mask.nonzero(as_tuple=False) # (num_visible_points, 2)
if indices.size(0) == 0:
warnings.warn("No points left after visibility filtering")
return None, None, None
batch_indices, point_indices = indices[:, 0], indices[:, 1]
coords0_filtered = coords0[batch_indices, point_indices] # (num_visible_points, 2)
diff = pred_tracks[:, 1:] - pred_tracks[:, :-1] # (batch_size, num_frames-1, num_points, 2)
motion = torch.norm(diff, dim=-1).mean(dim=1) # (batch_size, num_points)
motion_mask = motion > motion_threshold
combined_mask = vis_mask & motion_mask # (batch_size, num_points)
indices = combined_mask.nonzero(as_tuple=False)
if indices.size(0) == 0:
warnings.warn("No points left after motion filtering")
return None, None, None
batch_indices, point_indices = indices[:, 0], indices[:, 1]
pred_tracks_filtered = pred_tracks[batch_indices, :, point_indices, :] # (num_filtered_points, num_frames, 2)
pred_visibility_filtered = pred_visibility[batch_indices, :, point_indices] # (num_filtered_points, num_frames)
coords0_filtered = coords0[batch_indices, point_indices, :] # (num_filtered_points, 2)
motion_filtered = motion[batch_indices, point_indices] # (num_filtered_points)
num_keeped = motion_filtered.size(0)
num_points_sampled = min(max_points, num_keeped)
if num_points_sampled == 0:
warnings.warn("No points left after filtering")
return None, None, None
prob = motion_filtered / motion_filtered.max()
prob = prob / prob.sum()
sampled_indices = torch.multinomial(prob, num_points_sampled, replacement=False)
pred_tracks_sampled = pred_tracks_filtered[sampled_indices] # (num_points_sampled, num_frames, 2)
pred_visibility_sampled = pred_visibility_filtered[sampled_indices] # (num_points_sampled, num_frames)
coords0_sampled = coords0_filtered[sampled_indices] # (num_points_sampled, 2)
pred_tracks_sampled = pred_tracks_sampled.view(batch_size, num_points_sampled, num_frames, 2).transpose(1, 2)
pred_visibility_sampled = pred_visibility_sampled.view(batch_size, num_points_sampled, num_frames).transpose(1, 2)
coords0_sampled = coords0_sampled.view(batch_size, num_points_sampled, 2)
return pred_tracks_sampled, pred_visibility_sampled, coords0_sampled
class CoTrackerPredictor(torch.nn.Module):
def __init__(
self,
checkpoint="./checkpoints/cotracker2.pth",
shift_grid=False,
):
super().__init__()
self.support_grid_size = 6
model = build_cotracker(checkpoint)
self.interp_shape = model.model_resolution
self.model = model
self.model.eval()
self.shift_grid = shift_grid
@torch.no_grad()
def forward(
self,
video, # (B, T, 3, H, W)
# input prompt types:
# - None. Dense tracks are computed in this case. You can adjust *query_frame* to compute tracks starting from a specific frame.
# *backward_tracking=True* will compute tracks in both directions.
# - queries. Queried points of shape (B, N, 3) in format (t, x, y) for frame index and pixel coordinates.
# - grid_size. Grid of N*N points from the first frame. if segm_mask is provided, then computed only for the mask.
# You can adjust *query_frame* and *backward_tracking* for the regular grid in the same way as for dense tracks.
queries: torch.Tensor = None,
segm_mask: torch.Tensor = None, # Segmentation mask of shape (B, 1, H, W)
grid_size: int = 0,
grid_query_frame: int = 0, # only for dense and regular grid tracks
backward_tracking: bool = False,
):
if queries is None and grid_size == 0:
tracks, visibilities = self._compute_dense_tracks(
video,
grid_query_frame=grid_query_frame,
backward_tracking=backward_tracking,
)
else:
tracks, visibilities = self._compute_sparse_tracks(
video,
queries,
segm_mask,
grid_size,
add_support_grid=(grid_size == 0 or segm_mask is not None),
grid_query_frame=grid_query_frame,
backward_tracking=backward_tracking,
)
return tracks, visibilities
def _compute_dense_tracks(self, video, grid_query_frame, grid_size=80, backward_tracking=False):
*_, H, W = video.shape
grid_step = W // grid_size
grid_width = W // grid_step
grid_height = H // grid_step
tracks = visibilities = None
grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device)
grid_pts[0, :, 0] = grid_query_frame
for offset in range(grid_step * grid_step):
print(f"step {offset} / {grid_step * grid_step}")
ox = offset % grid_step
oy = offset // grid_step
grid_pts[0, :, 1] = torch.arange(grid_width).repeat(grid_height) * grid_step + ox
grid_pts[0, :, 2] = (
torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy
)
tracks_step, visibilities_step = self._compute_sparse_tracks(
video=video,
queries=grid_pts,
backward_tracking=backward_tracking,
)
tracks = smart_cat(tracks, tracks_step, dim=2)
visibilities = smart_cat(visibilities, visibilities_step, dim=2)
return tracks, visibilities
def _compute_sparse_tracks(
self,
video,
queries,
segm_mask=None,
grid_size=0,
add_support_grid=False,
grid_query_frame=0,
backward_tracking=False,
):
B, T, C, H, W = video.shape
video = video.reshape(B * T, C, H, W)
video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True)
video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1])
if queries is not None:
B, N, D = queries.shape
assert D == 3
queries = queries.clone()
queries[:, :, 1:] *= queries.new_tensor(
[
(self.interp_shape[1] - 1) / (W - 1),
(self.interp_shape[0] - 1) / (H - 1),
]
)
elif grid_size > 0:
grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device, shift_grid=self.shift_grid)
if segm_mask is not None:
segm_mask = F.interpolate(segm_mask, tuple(self.interp_shape), mode="nearest")
point_mask = segm_mask[0, 0][
(grid_pts[0, :, 1]).round().long().cpu(),
(grid_pts[0, :, 0]).round().long().cpu(),
].bool()
grid_pts = grid_pts[:, point_mask]
queries = torch.cat(
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts],
dim=2,
).repeat(B, 1, 1)
if add_support_grid:
grid_pts = get_points_on_a_grid(
self.support_grid_size, self.interp_shape, device=video.device, shift_grid=self.shift_grid,
)
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)
grid_pts = grid_pts.repeat(B, 1, 1)
queries = torch.cat([queries, grid_pts], dim=1)
tracks, visibilities, __ = self.model.forward(video=video, queries=queries, iters=6)
if backward_tracking:
tracks, visibilities = self._compute_backward_tracks(
video, queries, tracks, visibilities
)
if add_support_grid:
queries[:, -self.support_grid_size**2 :, 0] = T - 1
if add_support_grid:
tracks = tracks[:, :, : -self.support_grid_size**2]
visibilities = visibilities[:, :, : -self.support_grid_size**2]
thr = 0.9
visibilities = visibilities > thr
# correct query-point predictions
# see https://github.com/facebookresearch/co-tracker/issues/28
# TODO: batchify
for i in range(len(queries)):
queries_t = queries[i, : tracks.size(2), 0].to(torch.int64)
arange = torch.arange(0, len(queries_t))
# overwrite the predictions with the query points
tracks[i, queries_t, arange] = queries[i, : tracks.size(2), 1:]
# correct visibilities, the query points should be visible
visibilities[i, queries_t, arange] = True
tracks *= tracks.new_tensor(
[(W - 1) / (self.interp_shape[1] - 1), (H - 1) / (self.interp_shape[0] - 1)]
)
return tracks, visibilities
def _compute_backward_tracks(self, video, queries, tracks, visibilities):
inv_video = video.flip(1).clone()
inv_queries = queries.clone()
inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1
inv_tracks, inv_visibilities, __ = self.model(video=inv_video, queries=inv_queries, iters=6)
inv_tracks = inv_tracks.flip(1)
inv_visibilities = inv_visibilities.flip(1)
arange = torch.arange(video.shape[1], device=queries.device)[None, :, None]
mask = (arange < queries[:, None, :, 0]).unsqueeze(-1).repeat(1, 1, 1, 2)
tracks[mask] = inv_tracks[mask]
visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]]
return tracks, visibilities
class CoTrackerOnlinePredictor(torch.nn.Module):
def __init__(self, checkpoint="./checkpoints/cotracker2.pth"):
super().__init__()
self.support_grid_size = 6
model = build_cotracker(checkpoint)
self.interp_shape = model.model_resolution
self.step = model.window_len // 2
self.model = model
self.model.eval()
@torch.no_grad()
def forward(
self,
video_chunk,
is_first_step: bool = False,
queries: torch.Tensor = None,
grid_size: int = 10,
grid_query_frame: int = 0,
add_support_grid=False,
):
B, T, C, H, W = video_chunk.shape
# Initialize online video processing and save queried points
# This needs to be done before processing *each new video*
if is_first_step:
self.model.init_video_online_processing()
if queries is not None:
B, N, D = queries.shape
assert D == 3
queries = queries.clone()
queries[:, :, 1:] *= queries.new_tensor(
[
(self.interp_shape[1] - 1) / (W - 1),
(self.interp_shape[0] - 1) / (H - 1),
]
)
elif grid_size > 0:
grid_pts = get_points_on_a_grid(
grid_size, self.interp_shape, device=video_chunk.device
)
queries = torch.cat(
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts],
dim=2,
)
if add_support_grid:
grid_pts = get_points_on_a_grid(
self.support_grid_size, self.interp_shape, device=video_chunk.device
)
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)
queries = torch.cat([queries, grid_pts], dim=1)
self.queries = queries
return (None, None)
video_chunk = video_chunk.reshape(B * T, C, H, W)
video_chunk = F.interpolate(
video_chunk, tuple(self.interp_shape), mode="bilinear", align_corners=True
)
video_chunk = video_chunk.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1])
tracks, visibilities, __ = self.model(
video=video_chunk,
queries=self.queries,
iters=6,
is_online=True,
)
thr = 0.9
return (
tracks
* tracks.new_tensor(
[
(W - 1) / (self.interp_shape[1] - 1),
(H - 1) / (self.interp_shape[0] - 1),
]
),
visibilities > thr,
)