|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
import numpy as np |
|
import cv2 |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from cotracker.models.core.model_utils import smart_cat, get_points_on_a_grid |
|
from cotracker.models.build_cotracker import build_cotracker |
|
|
|
|
|
def gen_gaussian_heatmap(imgSize=200): |
|
circle_img = np.zeros((imgSize, imgSize), np.float32) |
|
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1) |
|
|
|
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32) |
|
|
|
|
|
for i in range(imgSize): |
|
for j in range(imgSize): |
|
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp( |
|
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2))) |
|
|
|
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask |
|
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32) |
|
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8) |
|
|
|
|
|
return isotropicGrayscaleImage |
|
|
|
|
|
def draw_heatmap(img, center_coordinate, heatmap_template, side, width, height): |
|
x1 = max(center_coordinate[0] - side, 1) |
|
x2 = min(center_coordinate[0] + side, width - 1) |
|
y1 = max(center_coordinate[1] - side, 1) |
|
y2 = min(center_coordinate[1] + side, height - 1) |
|
x1, x2, y1, y2 = int(x1), int(x2), int(y1), int(y2) |
|
|
|
if (x2 - x1) < 1 or (y2 - y1) < 1: |
|
print(center_coordinate, "x1, x2, y1, y2", x1, x2, y1, y2) |
|
return img |
|
|
|
need_map = cv2.resize(heatmap_template, (x2-x1, y2-y1)) |
|
|
|
img[y1:y2,x1:x2] = need_map |
|
|
|
return img |
|
|
|
|
|
def generate_gassian_heatmap(pred_tracks, pred_visibility=None, image_size=None, side=20): |
|
width, height = image_size |
|
num_frames, num_points = pred_tracks.shape[:2] |
|
|
|
point_index_list = [point_idx for point_idx in range(num_points)] |
|
heatmap_template = gen_gaussian_heatmap() |
|
|
|
|
|
image_list = [] |
|
for frame_idx in range(num_frames): |
|
|
|
img = np.zeros((height, width), np.float32) |
|
for point_idx in point_index_list: |
|
px, py = pred_tracks[frame_idx, point_idx] |
|
|
|
if px < 0 or py < 0 or px >= width or py >= height: |
|
continue |
|
|
|
if pred_visibility is not None: |
|
if (not pred_visibility[frame_idx, point_idx]): |
|
continue |
|
|
|
img = draw_heatmap(img, (px, py), heatmap_template, side, width, height) |
|
|
|
img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_GRAY2RGB) |
|
img = torch.from_numpy(img).permute(2, 0, 1).contiguous() |
|
image_list.append(img) |
|
|
|
video_gaussion_map = torch.stack(image_list, dim=0) |
|
|
|
return video_gaussion_map |
|
|
|
|
|
|
|
def sample_trajectories( |
|
pred_tracks, pred_visibility, |
|
max_points=10, |
|
motion_threshold=1, |
|
vis_threshold=5, |
|
|
|
): |
|
|
|
|
|
batch_size, num_frames, num_points = pred_visibility.shape |
|
|
|
|
|
mask = pred_visibility.sum(dim=1) > vis_threshold |
|
mask = mask.unsqueeze(1).repeat(1, num_frames, 1) |
|
pred_tracks = pred_tracks[mask].view(batch_size, num_frames, -1, 2) |
|
pred_visibility = pred_visibility[mask].view(batch_size, num_frames, -1) |
|
|
|
|
|
|
|
diff = pred_tracks[:, 1:] - pred_tracks[:, :-1] |
|
|
|
motion = torch.norm(diff, dim=-1) |
|
|
|
motion = torch.mean(motion, dim=1) |
|
|
|
mask = motion > motion_threshold |
|
assert mask.shape[0] == 1 |
|
num_keeped = mask.sum() |
|
if num_keeped < max_points: |
|
indices = torch.argsort(motion, dim=-1, descending=True)[:, :max_points] |
|
mask = torch.zeros_like(mask) |
|
|
|
mask[0, indices] = 1 |
|
num_keeped = mask.sum() |
|
|
|
motion = motion[mask].view(batch_size, num_keeped) |
|
|
|
mask = mask.unsqueeze(1).repeat(1, num_frames, 1) |
|
pred_tracks = pred_tracks[mask].view(batch_size, num_frames, num_keeped, 2) |
|
pred_visibility = pred_visibility[mask].view(batch_size, num_frames, num_keeped) |
|
|
|
|
|
|
|
num_points = min(max_points, num_keeped) |
|
if num_points == 0: |
|
warnings.warn("No points left after filtering") |
|
return None, None |
|
|
|
prob = motion / motion.max() |
|
prob = prob / prob.sum() |
|
sampled_indices = torch.multinomial(prob, num_points, replacement=False) |
|
|
|
sampled_indices = sampled_indices.squeeze(0) |
|
pred_tracks_sampled = pred_tracks[:, :, sampled_indices] |
|
pred_visibility_sampled = pred_visibility[:, :, sampled_indices] |
|
|
|
return pred_tracks_sampled, pred_visibility_sampled |
|
def sample_trajectories_with_ref( |
|
pred_tracks, pred_visibility, coords0, |
|
max_points=10, |
|
motion_threshold=1, |
|
vis_threshold=5, |
|
): |
|
|
|
|
|
|
|
batch_size, num_frames, num_points = pred_visibility.shape |
|
|
|
|
|
visibility_sum = pred_visibility.sum(dim=1) |
|
vis_mask = visibility_sum > vis_threshold |
|
|
|
|
|
|
|
pred_tracks = pred_tracks * vis_mask.unsqueeze(1).unsqueeze(-1) |
|
pred_visibility = pred_visibility * vis_mask.unsqueeze(1) |
|
|
|
|
|
indices = vis_mask.nonzero(as_tuple=False) |
|
if indices.size(0) == 0: |
|
warnings.warn("No points left after visibility filtering") |
|
return None, None, None |
|
|
|
batch_indices, point_indices = indices[:, 0], indices[:, 1] |
|
|
|
coords0_filtered = coords0[batch_indices, point_indices] |
|
|
|
|
|
diff = pred_tracks[:, 1:] - pred_tracks[:, :-1] |
|
motion = torch.norm(diff, dim=-1).mean(dim=1) |
|
|
|
motion_mask = motion > motion_threshold |
|
combined_mask = vis_mask & motion_mask |
|
|
|
|
|
indices = combined_mask.nonzero(as_tuple=False) |
|
if indices.size(0) == 0: |
|
warnings.warn("No points left after motion filtering") |
|
return None, None, None |
|
|
|
batch_indices, point_indices = indices[:, 0], indices[:, 1] |
|
|
|
pred_tracks_filtered = pred_tracks[batch_indices, :, point_indices, :] |
|
pred_visibility_filtered = pred_visibility[batch_indices, :, point_indices] |
|
coords0_filtered = coords0[batch_indices, point_indices, :] |
|
motion_filtered = motion[batch_indices, point_indices] |
|
|
|
|
|
num_keeped = motion_filtered.size(0) |
|
num_points_sampled = min(max_points, num_keeped) |
|
if num_points_sampled == 0: |
|
warnings.warn("No points left after filtering") |
|
return None, None, None |
|
|
|
prob = motion_filtered / motion_filtered.max() |
|
prob = prob / prob.sum() |
|
sampled_indices = torch.multinomial(prob, num_points_sampled, replacement=False) |
|
|
|
pred_tracks_sampled = pred_tracks_filtered[sampled_indices] |
|
pred_visibility_sampled = pred_visibility_filtered[sampled_indices] |
|
coords0_sampled = coords0_filtered[sampled_indices] |
|
|
|
|
|
pred_tracks_sampled = pred_tracks_sampled.view(batch_size, num_points_sampled, num_frames, 2).transpose(1, 2) |
|
pred_visibility_sampled = pred_visibility_sampled.view(batch_size, num_points_sampled, num_frames).transpose(1, 2) |
|
coords0_sampled = coords0_sampled.view(batch_size, num_points_sampled, 2) |
|
|
|
return pred_tracks_sampled, pred_visibility_sampled, coords0_sampled |
|
|
|
|
|
class CoTrackerPredictor(torch.nn.Module): |
|
def __init__( |
|
self, |
|
checkpoint="./checkpoints/cotracker2.pth", |
|
shift_grid=False, |
|
): |
|
|
|
super().__init__() |
|
self.support_grid_size = 6 |
|
model = build_cotracker(checkpoint) |
|
self.interp_shape = model.model_resolution |
|
self.model = model |
|
self.model.eval() |
|
self.shift_grid = shift_grid |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
video, |
|
|
|
|
|
|
|
|
|
|
|
|
|
queries: torch.Tensor = None, |
|
segm_mask: torch.Tensor = None, |
|
grid_size: int = 0, |
|
grid_query_frame: int = 0, |
|
backward_tracking: bool = False, |
|
): |
|
if queries is None and grid_size == 0: |
|
tracks, visibilities = self._compute_dense_tracks( |
|
video, |
|
grid_query_frame=grid_query_frame, |
|
backward_tracking=backward_tracking, |
|
) |
|
else: |
|
tracks, visibilities = self._compute_sparse_tracks( |
|
video, |
|
queries, |
|
segm_mask, |
|
grid_size, |
|
add_support_grid=(grid_size == 0 or segm_mask is not None), |
|
grid_query_frame=grid_query_frame, |
|
backward_tracking=backward_tracking, |
|
) |
|
|
|
return tracks, visibilities |
|
|
|
def _compute_dense_tracks(self, video, grid_query_frame, grid_size=80, backward_tracking=False): |
|
*_, H, W = video.shape |
|
grid_step = W // grid_size |
|
grid_width = W // grid_step |
|
grid_height = H // grid_step |
|
tracks = visibilities = None |
|
grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device) |
|
grid_pts[0, :, 0] = grid_query_frame |
|
for offset in range(grid_step * grid_step): |
|
print(f"step {offset} / {grid_step * grid_step}") |
|
ox = offset % grid_step |
|
oy = offset // grid_step |
|
grid_pts[0, :, 1] = torch.arange(grid_width).repeat(grid_height) * grid_step + ox |
|
grid_pts[0, :, 2] = ( |
|
torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy |
|
) |
|
tracks_step, visibilities_step = self._compute_sparse_tracks( |
|
video=video, |
|
queries=grid_pts, |
|
backward_tracking=backward_tracking, |
|
) |
|
tracks = smart_cat(tracks, tracks_step, dim=2) |
|
visibilities = smart_cat(visibilities, visibilities_step, dim=2) |
|
|
|
return tracks, visibilities |
|
|
|
def _compute_sparse_tracks( |
|
self, |
|
video, |
|
queries, |
|
segm_mask=None, |
|
grid_size=0, |
|
add_support_grid=False, |
|
grid_query_frame=0, |
|
backward_tracking=False, |
|
): |
|
B, T, C, H, W = video.shape |
|
|
|
video = video.reshape(B * T, C, H, W) |
|
video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True) |
|
video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) |
|
|
|
if queries is not None: |
|
B, N, D = queries.shape |
|
assert D == 3 |
|
queries = queries.clone() |
|
queries[:, :, 1:] *= queries.new_tensor( |
|
[ |
|
(self.interp_shape[1] - 1) / (W - 1), |
|
(self.interp_shape[0] - 1) / (H - 1), |
|
] |
|
) |
|
elif grid_size > 0: |
|
grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device, shift_grid=self.shift_grid) |
|
if segm_mask is not None: |
|
segm_mask = F.interpolate(segm_mask, tuple(self.interp_shape), mode="nearest") |
|
point_mask = segm_mask[0, 0][ |
|
(grid_pts[0, :, 1]).round().long().cpu(), |
|
(grid_pts[0, :, 0]).round().long().cpu(), |
|
].bool() |
|
grid_pts = grid_pts[:, point_mask] |
|
|
|
queries = torch.cat( |
|
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts], |
|
dim=2, |
|
).repeat(B, 1, 1) |
|
|
|
if add_support_grid: |
|
grid_pts = get_points_on_a_grid( |
|
self.support_grid_size, self.interp_shape, device=video.device, shift_grid=self.shift_grid, |
|
) |
|
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2) |
|
grid_pts = grid_pts.repeat(B, 1, 1) |
|
queries = torch.cat([queries, grid_pts], dim=1) |
|
|
|
tracks, visibilities, __ = self.model.forward(video=video, queries=queries, iters=6) |
|
|
|
if backward_tracking: |
|
tracks, visibilities = self._compute_backward_tracks( |
|
video, queries, tracks, visibilities |
|
) |
|
if add_support_grid: |
|
queries[:, -self.support_grid_size**2 :, 0] = T - 1 |
|
if add_support_grid: |
|
tracks = tracks[:, :, : -self.support_grid_size**2] |
|
visibilities = visibilities[:, :, : -self.support_grid_size**2] |
|
thr = 0.9 |
|
visibilities = visibilities > thr |
|
|
|
|
|
|
|
|
|
|
|
for i in range(len(queries)): |
|
queries_t = queries[i, : tracks.size(2), 0].to(torch.int64) |
|
arange = torch.arange(0, len(queries_t)) |
|
|
|
|
|
tracks[i, queries_t, arange] = queries[i, : tracks.size(2), 1:] |
|
|
|
|
|
visibilities[i, queries_t, arange] = True |
|
|
|
tracks *= tracks.new_tensor( |
|
[(W - 1) / (self.interp_shape[1] - 1), (H - 1) / (self.interp_shape[0] - 1)] |
|
) |
|
return tracks, visibilities |
|
|
|
def _compute_backward_tracks(self, video, queries, tracks, visibilities): |
|
inv_video = video.flip(1).clone() |
|
inv_queries = queries.clone() |
|
inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1 |
|
|
|
inv_tracks, inv_visibilities, __ = self.model(video=inv_video, queries=inv_queries, iters=6) |
|
|
|
inv_tracks = inv_tracks.flip(1) |
|
inv_visibilities = inv_visibilities.flip(1) |
|
arange = torch.arange(video.shape[1], device=queries.device)[None, :, None] |
|
|
|
mask = (arange < queries[:, None, :, 0]).unsqueeze(-1).repeat(1, 1, 1, 2) |
|
|
|
tracks[mask] = inv_tracks[mask] |
|
visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]] |
|
return tracks, visibilities |
|
|
|
|
|
class CoTrackerOnlinePredictor(torch.nn.Module): |
|
def __init__(self, checkpoint="./checkpoints/cotracker2.pth"): |
|
super().__init__() |
|
self.support_grid_size = 6 |
|
model = build_cotracker(checkpoint) |
|
self.interp_shape = model.model_resolution |
|
self.step = model.window_len // 2 |
|
self.model = model |
|
self.model.eval() |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
video_chunk, |
|
is_first_step: bool = False, |
|
queries: torch.Tensor = None, |
|
grid_size: int = 10, |
|
grid_query_frame: int = 0, |
|
add_support_grid=False, |
|
): |
|
B, T, C, H, W = video_chunk.shape |
|
|
|
|
|
if is_first_step: |
|
self.model.init_video_online_processing() |
|
if queries is not None: |
|
B, N, D = queries.shape |
|
assert D == 3 |
|
queries = queries.clone() |
|
queries[:, :, 1:] *= queries.new_tensor( |
|
[ |
|
(self.interp_shape[1] - 1) / (W - 1), |
|
(self.interp_shape[0] - 1) / (H - 1), |
|
] |
|
) |
|
elif grid_size > 0: |
|
grid_pts = get_points_on_a_grid( |
|
grid_size, self.interp_shape, device=video_chunk.device |
|
) |
|
queries = torch.cat( |
|
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts], |
|
dim=2, |
|
) |
|
if add_support_grid: |
|
grid_pts = get_points_on_a_grid( |
|
self.support_grid_size, self.interp_shape, device=video_chunk.device |
|
) |
|
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2) |
|
queries = torch.cat([queries, grid_pts], dim=1) |
|
self.queries = queries |
|
return (None, None) |
|
|
|
video_chunk = video_chunk.reshape(B * T, C, H, W) |
|
video_chunk = F.interpolate( |
|
video_chunk, tuple(self.interp_shape), mode="bilinear", align_corners=True |
|
) |
|
video_chunk = video_chunk.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) |
|
|
|
tracks, visibilities, __ = self.model( |
|
video=video_chunk, |
|
queries=self.queries, |
|
iters=6, |
|
is_online=True, |
|
) |
|
thr = 0.9 |
|
return ( |
|
tracks |
|
* tracks.new_tensor( |
|
[ |
|
(W - 1) / (self.interp_shape[1] - 1), |
|
(H - 1) / (self.interp_shape[0] - 1), |
|
] |
|
), |
|
visibilities > thr, |
|
) |
|
|