|
import random |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, in_dim, out_dim, mid_dim=128): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(in_dim, mid_dim, bias=True), |
|
nn.SiLU(inplace=False), |
|
nn.Linear(mid_dim, out_dim, bias=True) |
|
) |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
def bilinear_interpolation(level_adapter_state, x, y, frame_idx, interpolated_value): |
|
|
|
|
|
x1 = int(x) |
|
y1 = int(y) |
|
x2 = x1 + 1 |
|
y2 = y1 + 1 |
|
x_frac = x - x1 |
|
y_frac = y - y1 |
|
|
|
x1, x2 = max(min(x1, level_adapter_state.shape[3] - 1), 0), max(min(x2, level_adapter_state.shape[3] - 1), 0) |
|
y1, y2 = max(min(y1, level_adapter_state.shape[2] - 1), 0), max(min(y2, level_adapter_state.shape[2] - 1), 0) |
|
|
|
w11 = (1 - x_frac) * (1 - y_frac) |
|
w21 = x_frac * (1 - y_frac) |
|
w12 = (1 - x_frac) * y_frac |
|
w22 = x_frac * y_frac |
|
|
|
level_adapter_state[frame_idx, :, y1, x1] += interpolated_value * w11 |
|
level_adapter_state[frame_idx, :, y1, x2] += interpolated_value * w21 |
|
level_adapter_state[frame_idx, :, y2, x1] += interpolated_value * w12 |
|
level_adapter_state[frame_idx, :, y2, x2] += interpolated_value * w22 |
|
|
|
return level_adapter_state |
|
|
|
|
|
|
|
class SparsePointAdapter(ModelMixin, ConfigMixin): |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
embedding_channels=1280, |
|
channels=[320, 640, 1280, 1280], |
|
downsample_rate=[8, 16, 32, 64], |
|
mid_dim=128, |
|
): |
|
super().__init__() |
|
|
|
self.model_list = nn.ModuleList() |
|
|
|
for ch in channels: |
|
self.model_list.append(MLP(embedding_channels, ch, mid_dim)) |
|
|
|
self.downsample_rate = downsample_rate |
|
self.channels = channels |
|
self.radius = 2 |
|
|
|
def generate_loss_mask(self, point_index_list, point_tracker, num_frames, h, w, loss_type): |
|
if loss_type == 'global': |
|
|
|
loss_mask = torch.ones((num_frames, 4, h // self.downsample_rate[0], w // self.downsample_rate[0])) |
|
else: |
|
|
|
loss_mask = torch.zeros((num_frames, 4, h // self.downsample_rate[0], w // self.downsample_rate[0])) |
|
for point_idx in point_index_list: |
|
for frame_idx in range(num_frames): |
|
px, py = point_tracker[frame_idx, point_idx] |
|
|
|
if px < 0 or py < 0: |
|
continue |
|
else: |
|
px, py = px / self.downsample_rate[0], py / self.downsample_rate[0] |
|
|
|
x1 = int(px) - self.radius |
|
y1 = int(py) - self.radius |
|
x2 = int(px) + self.radius |
|
y2 = int(py) + self.radius |
|
|
|
x1, x2 = max(min(x1, loss_mask.shape[3] - 1), 0), max(min(x2, loss_mask.shape[3] - 1), 0) |
|
y1, y2 = max(min(y1, loss_mask.shape[2] - 1), 0), max(min(y2, loss_mask.shape[2] - 1), 0) |
|
|
|
loss_mask[:, :, y1:y2, x1:x2] = 1.0 |
|
return loss_mask |
|
|
|
def forward(self, point_tracker, size, point_embedding, index_list=None, drop_rate=0.0, loss_type='global') -> List[torch.Tensor]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
w, h = size |
|
num_frames, num_points = point_tracker.shape[:2] |
|
|
|
if self.training: |
|
point_index_list = [point_idx for point_idx in range(num_points) if random.random() > drop_rate] |
|
loss_mask = self.generate_loss_mask(point_index_list, point_tracker, num_frames, h, w, loss_type) |
|
else: |
|
point_index_list = [point_idx for point_idx in range(num_points) if index_list is None or point_idx in index_list] |
|
|
|
adapter_state = [] |
|
for level_idx, module in enumerate(self.model_list): |
|
|
|
downsample_rate = self.downsample_rate[level_idx] |
|
level_w, level_h = w // downsample_rate, h // downsample_rate |
|
|
|
|
|
point_feat = module(point_embedding) |
|
|
|
level_adapter_state = torch.zeros((num_frames, self.channels[level_idx], level_h, level_w)).to(point_feat.device, dtype=point_feat.dtype) |
|
|
|
for point_idx in point_index_list: |
|
|
|
for frame_idx in range(num_frames): |
|
px, py = point_tracker[frame_idx, point_idx] |
|
|
|
if px < 0 or py < 0: |
|
continue |
|
else: |
|
px, py = px / downsample_rate, py / downsample_rate |
|
level_adapter_state = bilinear_interpolation(level_adapter_state, px, py, frame_idx, point_feat[point_idx]) |
|
adapter_state.append(level_adapter_state) |
|
|
|
if self.training: |
|
return adapter_state, loss_mask |
|
else: |
|
return adapter_state |
|
|